DOI QR코드

DOI QR Code

Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin

  • Park, Gab-Man (Department of Medical Environmental Biology, Catholic Kwandong University College of Medicine) ;
  • Park, Hyun (Department of Environmental Medical Biology, Wonkwang University College of Medicine) ;
  • Oh, Sangtae (Department of Basic Science, Catholic Kwandong University College of Medicine) ;
  • Lee, Seokjoon (Department of Pharmacology, Catholic Kwandong University College of Medicine)
  • 투고 : 2017.08.08
  • 심사 : 2017.12.05
  • 발행 : 2017.12.31

초록

We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.

키워드

참고문헌

  1. Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science 1985; 228: 1049-1055. https://doi.org/10.1126/science.3887571
  2. Lee S. Artemisinin, promising lead natural product for various drug developments. Mini Rev Med Chem 2007; 7: 411-422. https://doi.org/10.2174/138955707780363837
  3. Luo XD, Shen CC. The chemistry, pharmacology, and clinical applications of qinghaosu (artemisinin) and its derivatives. Med Res Rev 1987; 7: 29-52. https://doi.org/10.1002/med.2610070103
  4. Jung M. Current developments in the chemistry of artemisinin and related compounds. Curr Med Chem 1994; 1: 35-49.
  5. Haynes RK, Vonwiller SC. From Qinghao, marvelous herb of antiquity, to the antimalarial trioxane qinghaosu-and some remarkable new chemistry. Acc Chem Res 1997; 30: 73-79. https://doi.org/10.1021/ar950058w
  6. Vroman JA, Alvim-Gaston M, Avery MA. Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials. Curr Pharm Design 1999; 5: 101-138.
  7. Beekman AC, Barentsen ARW, Woerdenbag HJ, Van Uden W, Pras N, Konings AW, el-Feraly FS, Galal AM. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 1997; 60: 325-330. https://doi.org/10.1021/np9605495
  8. Jung M, Lee S, Ham J, Lee K, Kim H, Kim SK. Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer. J Med Chem 2003; 46: 987-994. https://doi.org/10.1021/jm020119d
  9. Posner GH, Paik IH, Sur S, McRiner AJ, Borstnik K, Xie S, Shapiro TA. Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J Med Chem 2003; 46: 1060-1065. https://doi.org/10.1021/jm020461q
  10. Brewer TG, Peggins JO, Grate SJ, Petras JM, Levine BS, Weina PJ, Swearengen J, Heiffer MH, Schuster BG. Neurotoxicity in animals due to arteether and artemether. Trans R Soc Trop Med Hyg 1994; 88: 33-36.
  11. Lin AJ, Lee M, Klayman DL. Antimalarial activity of new watersoluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side chain. J Med Chem 1989; 32: 1249-1252. https://doi.org/10.1021/jm00126a017
  12. Lin AJ, Klayman DL, Milhous WK. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. J Med Chem 1987; 30: 2147-2150. https://doi.org/10.1021/jm00394a037
  13. Lin AJ, Miller RE. Antimalarial activity of new dihydroartemisinin derivatives. 6. alpha-Alkylbenzylic ethers. J Med Chem 1995; 38: 764-770. https://doi.org/10.1021/jm00005a004
  14. Jung M, Li X, Bustos DA, ElSohly HN, McChesney JD. A short and stereospecific synthesis of (+)-deoxoartemisinin and (-)-deoxodesoxyartemisinin. Tetrahedron Lett. 1989; 44: 5973-5976.
  15. Jung M, Li X, Bustos DA, elSohly HN, McChesney JD, Milhous WK. Synthesis and antimalarial activity of (+)-deoxoartemisinin. J Med Chem 1990; 33: 1516-1518. https://doi.org/10.1021/jm00167a036
  16. Lee S, Oh S, Park GM, Kim TS, Ryu JS, Choi HK. Antimalarial activity of thiophenyl- and benzenesulfonyl-dihydroartemisinin. Korean J Parasitol 2005; 43: 123-126. https://doi.org/10.3347/kjp.2005.43.3.123
  17. Jung M, Lee S. Stability of acetal and non acetal-type analogs of artemisinin in simulated stomach acid. Bioorg Med Chem Lett 1998; 8: 1003-1006. https://doi.org/10.1016/S0960-894X(98)00160-7
  18. Gordi T, Lepist EI. Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett 2004; 147: 99-107. https://doi.org/10.1016/j.toxlet.2003.12.009
  19. Haynes RK, Wong HN, Lee KW, Lung CM, Shek LY, Williams ID, Croft SL, Vivas L, Rattray L, Stewart L, Wong VK, Ko BC. Preparation of N-sulfonyl- and N-carbonyl-11-azaartemisinins with greatly enhanced thermal stabilities: in vitro antimalarial activities. Chem Med Chem 2007; 2: 1464-1479. https://doi.org/10.1002/cmdc.200700065
  20. Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, Chan HW, Cheung MK, Lam WL, Wong HN, Croft SL, Vivas L, Rattray L, Stewart L, Peters W, Robinson BL, Edstein MD, Kotecka B, Kyle DE, Beckermann B, Gerisch M, Radtke M, Schmuck G, Steinke W, Wollborn U, Schmeer K, Romer A. Artemisone--a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed Engl 2006; 45: 2082-2088. https://doi.org/10.1002/anie.200503071
  21. Cho S, Oh S, Um Y, Jung JH, Ham J, Shin WS, Lee S. Synthesis of 10-substituted triazolyl artemisinins possessing anticancer activity via Huisgen 1,3-dipolar cycloaddition. Bioorg Med Chem Lett 2009; 19: 382-385. https://doi.org/10.1016/j.bmcl.2008.11.067
  22. Oh S, Shin WS, Ham J, Lee S. Acid-catalyzed synthesis of 10-substituted triazolyl artemisinins and their growth inhibitory activity against various cancer cells. Bioorg Med Chem Lett 2010; 20: 4112-4115. https://doi.org/10.1016/j.bmcl.2010.05.074
  23. Lee S. Synthesis of $10{\beta}$-substituted triazolyl artemisinins and their growth inhibitory activity against various cancer cells. Bull Korean Chem Soc 2011; 32: 737-740. https://doi.org/10.5012/bkcs.2011.32.2.737
  24. Nguyen-Dinh P, Trager W. Plasmodium falciparum in vitro: determination of chloroquine sensitivity of three new strains by a modified 48-hour test. Am J Trop Med Hyg 1980; 29: 339-342. https://doi.org/10.4269/ajtmh.1980.29.339
  25. Jensen JB, Trager W. Plasmodium falciparum in culture: establishment of additional strains. Am J Trop Med Hyg 1978; 27: 743-746. https://doi.org/10.4269/ajtmh.1978.27.743
  26. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 1979; 16: 710-718. https://doi.org/10.1128/AAC.16.6.710
  27. Delhaes L, Biot C, Berry L, Delcourt P, Maciejewski LA, Camus D, Brocard JS, Dive D. Synthesis of ferroquine enantiomers: first investigation of effects of metallocenic chirality upon antimalarial activity and cytotoxicity. Chembiochem 2002; 3: 418-423. https://doi.org/10.1002/1439-7633(20020503)3:5<418::AID-CBIC418>3.0.CO;2-P