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Abstract. Let Inn(Q) denote the inner automorphism group on a quandle Q. For a

subset M of Q, let c(M) denote the orbit of M under the Inn(Q)-action on Q. Then c

satisfies the axioms of the closure operator. In this paper, we study the topological space

Q corresponding to the topology obtained from the closure operator c.

1. Introduction and Preliminaries

A quandle was introduced by Joyce[8] and Matveev[9] independently in 1980s.
A quandle is an algebraic structure which is closely related to Reidemeister moves
in knot theory. By using quandles, various knot invariants can be introduced, for
example, quandle colorability, quandle cocycle invariant[1], [2], [3], etc.

Definition 1.1. A quandle is a set Q equipped with a binary operation ∗ : Q ×
Q −→ Q satisfying the following axioms ;

(1) For all a ∈ Q, a ∗ a = a.

(2) For all a, b ∈ Q, ∃!c ∈ Q such that c ∗ a = b.

(3) For all a, b, c ∈ Q, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

A rack is a set with a binary operation satisfying axioms above except the first
condition.
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Example 1.2.

(1) Let X be a set. Define a binary operation ∗ by x ∗ y = x for x, y ∈ X. Then
(X, ∗) is a quandle, which is called the trivial quandle.

(2) Let G be a group. Define a binary operation ∗ by g∗h = h−nghn for g, h ∈ G.
Then (G, ∗) is a quandle, which is called the n-fold conjugation quandle.

(3) Let (M,+) be an abelian group. Let t be a group automorphism of M . Define
a binary operation ∗t by a ∗t b = ta + (1 − t)b for a, b ∈ M . Then (M, ∗t) is
a quandle, which is called an Alexander quandle.

Example 1.3. ([7]) Let ( , ) be a symmetric bilinear form defined on Euclidean
vector space Rn. Then if S is the subset of Rn consisting of vectors v satisfying
(v,v) 6= 0, there is a rack structure on S defined by the operation

u ∗0 v := u− 2(u,v)
(v,v) v.

Geometrically, this is the result of reflecting u in the hyperplane H = {w|(w,v) =
0}. This rack structure is called the coxeter rack. Since u ∗0 u = −u, the operation
∗0 is not a quandle operation. If we multiply the right-hand side of the above
formula by −1, then the operation

u ∗ v := 2(u,v)
(v,v) v − u

defines a quandle structure on S. This quandle structure is called the coxeter
quandle on Rn.

Notice that for u,v ∈ R2, u∗v is the result of reflecting u in the line containing
v as described Figure 1.

v

u

u*v

x

y

Figure 1: Coxeter quandle operation on R2

In the second axiom of Definition 1.1, one can see that the operation ∗̄ : Q ×
Q −→ Q defined by c = a ∗̄ b also satisfies all quandle axioms. We called ∗̄ the
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reverse operation of ∗. For each a ∈ Q, one can obtain two functions σa : Q → Q
and σ̄a : Q→ Q defined by

σa(x) = x ∗ a, σ̄a(x) = x ∗̄ a.

Definition 1.4. Let (Q1, ∗1) and (Q2, ∗2) be quandles and f : Q1 −→ Q2 a
function.

(1) f is called a quandle homomorphism if f(a∗1b) = f(a)∗2f(b) for all a, b ∈ Q1.

(2) f is called a quandle isomorphism if f is a bijective quandle homomorphism.

(3) f is called a quandle automorphism if (Q1, ∗1) = (Q2, ∗2) and f is a quandle
isomorphism. That is, a quandle automorphism is a quandle isomorphism
from a quandle to itself.

(4) A quandle automorphism group of Q1, denoted by Aut(Q1), is the group of
all quandle automorphisms of Q1.

(5) A quandle inner automorphism group of Q1, denoted by Inn(Q1), is the
subgroup of Aut(Q1) generated by the set of {σa, σ̄a| a ∈ Q1}.

Definition 1.5. Let (Q, ∗) be a quandle and a ∈ Q. The orbit of Q corresponding
to a, denoted by orbQ(a) or simply orb(a), is the set of all b ∈ Q such that

(· · · ((a ∗1 x1) ∗2 x2) · · · ) ∗n xn = b,

where xi ∈ Q and ∗i ∈ {∗, ∗̄}. For any non-empty subset M of Q, the union of all
orbits corresponding to elements in M is called the orbit of M . The orbit set of Q,
denoted by orb(Q), is the set of all orbits orbQ(a) of Q. A quandle Q is said to be
connected if Q has only one orbit, Q itself. That is, its inner automorphism group
Inn(Q) acts on Q transitively.

We consider a function c which maps a subset M of Q to the orbit of M . Then c
satisfies the axioms of the closure operator. In this paper, we study the topological
space Q endowed with the topology obtained from the closure operator c.

2. Main Results

In this section, we study the construction of topological space on a quandle and
its topological properties.

Definition 2.1. Let Q be a quandle with a binary operation ∗ and M ⊂ Q. M is
called a subquandle of Q if M is a quandle under the binary operation ∗.

In [10], S. Nelson anc C.-Y. Wong showed the following lemma.

Lemma 2.2. Let Q be a quandle and M ⊂ Q. Then M is a subquandle if and only
if M is closed under the operation ∗.
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Now, we introduce a method to get a closure operator on a quandle Q.

Definition 2.3.([4]) Let X be a set. A closure operator on X is a function
c : P(X) → P(X) which associates with each subset A of X satisfying following
properties;

(1) c(∅) = ∅,
(2) A ⊂ c(A),

(3) c(c(A)) = c(A),

(4) c(A ∪B) = c(A) ∪ c(B),

for all subsets A,B of X. Here P(X) is the power set of X. A subset A of X is
said to be c-closed provided that c(A) = A. A subset B of X is said to be c-open
provided that X\B is c-closed.

It is known that for a closure operator c on X, the family T of all c-open sets
forms a topology for X.

Lemma 2.4. Let Q be a quandle. Define a function c : P(Q) → P(Q) by, for any
subset M of Q,

c(M) = {x ∈ Q | x ∈ orbQ(a), a ∈M}.
Then c is a closure operator on Q.

Proof. We will check all conditions for the definition of a closure operator. Let M
and N be subsets of Q.

(1) It is clear that c(∅) = ∅.
(2) Let a be an element of M . Since a ∗ a = a, a ∈ orbQ(a). It implies that

a ∈ c(M). Hence, M ⊂ c(M).

(3) By (2), it is clear that c(M) ⊂ c(c(M)). Now we claim that c(c(M)) ⊂ c(M).
Let x be an element of c(c(M)). Then

x ∈ c(c(M))⇒ x ∈ orbQ(a) and a ∈ c(M)

⇒ x ∈ orbQ(a), a ∈ orbQ(m) and m ∈M
⇒ x ∈ orbQ(m) and m ∈M
⇒ x ∈ c(M).

Hence, we have that c(c(M)) = c(M).

(4) Let x be an element of c(M ∪N). Then

x ∈ c(M ∪N)⇔ x ∈ orbQ(a) and a ∈M ∪N
⇔ x ∈ orbQ(a) and (a ∈M or a ∈ N)

⇔ (x ∈ orbQ(m) and a ∈M) or (x ∈ orbQ(m) and a ∈ N)

⇔ x ∈ c(M) or x ∈ c(N)

⇔ x ∈ c(M) ∪ c(N).
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Hence, we have that c(M ∪N) = c(M) ∪ c(N). 2

Remark 2.5.

(1) In [6], V. Even and M. Gran studied the category of quandles and also proved
Lemma 2.4 by using the category theory.

(2) Note that orb(a) for a ∈ Q is the smallest set containing a which is closed
under the operation of Q. Therefore, orb(a) is the smallest subquandle of Q
containing a by Lemma 2.2 and the c(M) is the smallest subquandle of Q
containing M .

Definition 2.6. Let Q be a quandle and c the closure operator defined in Lemma
2.4. The intrinsic topology TQ is the topology onQ defined from the closure operator
c. Indeed, TQ = {M ⊂ Q | M is c-open}.

Example 2.7. Let Q1 and Q2 be two quandles whose operation tables are in
Table 1. Then we have orbQ1

(1) = orbQ1
(2) = {1, 2}, orbQ1

(3) = orbQ1
(4) =

{3, 4}, orbQ1
(5) = {5} and orbQ2

(1) = orbQ2
(2) = orbQ2

(3) = orbQ2
(4) =

orbQ2(5) = {1, 2, 3, 4, 5}. Hence, the intrinsic topologies are TQ1 = {∅, {1, 2}, {3, 4},
{5}, {1, 2, 3, 4}, {1, 2, 5}, {3, 4, 5}, Q1} and TQ2 = {∅, Q2}.

Q1 1 2 3 4 5

1 1 1 2 2 2
2 2 2 1 1 1
3 3 3 3 3 4
4 4 4 4 4 3
5 5 5 5 5 5

Q2 1 2 3 4 5

1 1 4 5 3 2
2 3 2 4 5 1
3 2 5 3 1 4
4 5 1 2 4 3
5 4 3 1 2 5

Table 1: The operation tables of two quandles of order 5

Example 2.8.

(1) Let Q be a trivial quandle. Since orbQ(a) = {a} for any element a ∈ Q,
c(M) = M for any subset M of Q. Indeed, the intrinsic topology TQ on Q is
the discrete topology on Q.

(2) Let Q be a connected quandle. Then orbQ(a) = Q for any element a ∈ Q and
its intrinsic topology TQ on Q consists of the empty set and Q itself. Indeed,
TQ is the trivial topology on Q.

Example 2.9. Let O(n) be the group of n×n orthogonal matrices. Then det(A) =
±1 for all A ∈ O(n). Consider the 1-fold conjugation quandle operation, defined by
A ∗B = B−1AB, on O(n). It is not hard to see that the orbit set of O(n) is the set
of all conjugacy classes. Hence, the intrinsic topology of (O(n), ∗) is the topology
generated by all conjugacy classes of O(n).
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Example 2.10. Consider the Alexander quandle (Z, ∗) on the integer group Z with
the quandle operation defined by

x ∗ y = 2y − x for any x, y ∈ Z.

Let Zo be the set of all odd integers and Ze the set of all even integers. We know
that if z ∈ Z, then

orbZ(a) =

{
Zo if a is odd,
Ze if a is even.

Hence, the intrinsic topology TZ on (Z, ∗) is {∅,Zo,Ze,Z}.

Now, we study topological properties of the intrinsic topology on a quandle.

Theorem 2.11. Let Q be a quandle and TQ the intrinsic topology. Let M be a
subset of Q. Then

(1) The interior of M is the union of all orbits which is contained in M .

(2) Every member of TQ is both open and closed.

(3) TQ is generated by all orbit sets of Q.

(4) (Q,TQ) is locally connected.

Proof. They are straightforward from the definition of the intrinsic topology. 2

Theorem 2.12. Let Q be a quandle and TQ the intrinsic topology. Then the
following statements are equivalent.

(1) Q is the trivial quandle.

(2) TQ is the discrete topology.

(3) (Q,TQ) is totally disconnected.

Proof. In Example 2.8. (1), it was introduced that the intrinsic topology on a trivial
quandle Q was discrete. Indeed, the topology is totally disconnected. Conversely,
if the intrinsic topology is totally disconnected, every two-point set is disconnected.
Then every orbit of Q is singleton and Q is a trivial quandle. 2

Theorem 2.13. Let Q be a quandle and TQ the intrinsic topology. Then the
following statements are equivalent.

(1) Q is a connected quandle.

(2) TQ is the trivial topology.

(3) (Q,TQ) is connected.
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Proof. In Example 2.8.(2), it was introduced that the intrinsic topology on a con-
nected quandle Q was trivial. Indeed, the topology is connected. Conversely, if the
intrinsic topology is connected, then there exist no pair of open sets which separate
Q. Then there exist no proper orbits of Q and Q is a connected quandle. 2

Remark 2.14. Note that the separation axioms of the intrinsic topology TQ de-
pends on the quandle Q. Consider the quandle operation table Q2 in Example 2.7.
For any distinct two points in Q2, there exists no open set containing one of the
points but not the other. Moreover, one can see that TQ is a T0-space if and only
in Q is a trivial quandle.

Theorem 2.15. Let Q be a quandle and M a subquandle of Q. Then (M,TM ) is
a subspace of (Q,TQ).

Proof. It is true that orbM (a) = orbQ(a) ∩M for any a ∈M . 2

Definition 2.16. Let (Q1, ∗1) and (Q2, ∗2) be two quandles. The product quandle
of (Q1, ∗1) and (Q2, ∗2) is the set Q1 ×Q2 with the binary operation ∗ defined by,
for any (a, z), (b, y) ∈ Q1 ×Q2,

(a, x) ∗ (b, y) = (a ∗1 b, x ∗2 y).

Proposition 2.17.([5]) Let Q1 and Q2 be two quandle. Then Q1×Q2 is connected
if both Q1 and Q2 are connected.

Theorem 2.18. Let Q1 and Q2 be two quandles. Then TQ1×Q2
= TQ1

× TQ2
.

Proof. We will show that TQ1×Q2
and TQ1

×TQ2
have the same basis. By Definition

2.6, TQ1×Q2 is generated by all orbit sets of Q1 ×Q2. By Proposition 2.17, all the
orbits of the quandle TQ1×Q2 are obtained by the product of each orbit of TQ1 and
TQ2

. One can see that it is the definition of the product topology of TQ1
×TQ2

. 2

Example 2.19. Let Q1 and Q2 be two quandles with operation tables in Table 2.
Then TQ1

= {∅, Q1} and TQ2
= {∅, {1, 2}, {3}, Q2} and the product quandle of Q1

and Q2 has the operation table in Table 3. Hence, the intrinsic topology TQ1×Q2

on the product quandle is the equal to the product topology of TQ1
and TQ2

TQ1 × TQ2 = {∅, {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}, {(1, 3), (2, 3), (3, 3)}, Q1 ×Q2}.

Q1 1 2 3

1 1 3 2
2 3 2 1
3 2 1 3

Q2 1 2 3

1 1 1 2
2 2 2 1
3 3 3 3

Table 2: The operation tables of two quandle of order 3
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Q1 ×Q2 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) (1,1) (1,1) (1,2) (3,1) (3,1) (3,2) (2,1) (2,1) (2,2)
(1,2) (1,2) (1,2) (1,1) (3,2) (3,2) (3,1) (2,2) (2,2) (2,1)
(1,3) (1,3) (1,3) (1,3) (3,3) (3,3) (3,3) (2,3) (2,3) (2,3)
(2,1) (3,1) (3,1) (3,2) (2,1) (2,1) (2,2) (1,1) (1,1) (1,2)
(2,2) (3,2) (3,2) (3,1) (2,2) (2,2) (2,1) (1,2) (1,2) (1,1)
(2,3) (3,3) (3,3) (3,3) (2,3) (2,3) (2,3) (1,3) (1,3) (1,3)
(3,1) (2,1) (2,1) (2,2) (1,1) (1,1) (1,2) (3,1) (3,1) (3,2)
(3,2) (2,2) (2,2) (2,1) (1,2) (1,2) (1,1) (3,2) (3,2) (3,1)
(3,3) (2,3) (2,3) (2,3) (1,3) (1,3) (1,3) (3,3) (3,3) (3,3)

Table 3: The operation table of the product quandle of Q1 and Q2

Example 2.20. Consider the coxeter quandle Q on R2. Let u be a nonzero vector
in R2. By the geometric meaning of the coxeter quandle operation, it is easy to
show that orb(u) = {v ∈ R2\{0} | ‖v‖ = ‖u‖}. That is, orb(u) is a circle centered
at the origin of radius ‖u‖ as depicted in Figure 2. Hence, the intrinsic topology T
on Q is generated by all circles centered at origin.

u

x

y

orb(u)

Figure 2: The orbit of the coxeter quandle on R2

Let C(1) denote the circle centered at the origin of the radius 1. For any element
x, y ∈ C(1), we see that ‖x ∗ y‖ = ‖x‖ = ‖y‖. Then x ∗ y is also an element in C(1).
By Lemma. 2.2, C(1) is a connected subquandle of the coxeter quandle on R2. We
denote the intrinsic topology on C(1) by TC(1).

Let R be the real line in R2. One can easily check that R is a subquandle of the
coxeter quandle on R2. Since for two vectors u and v in R, u ∗ v = u, (R, ∗) is the
trivial quandle. We denote the intrinsic topology on R by TR.

Then the product topology TC(1) × TRof TC(1) and TR is generated by
{C(1) × {u} | u ∈ R}. Since the bases for the intrinsic topology T of the cox-
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eter quandle and TC(1) × TR are the same, the intrinsic topology T of the coxeter

quandle on R2 is the product topology TC(1) × TR.
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