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Abstract. For partitioned matrices, the Khatri-Rao product is viewed as a generalized

Hadamard product. In this paper we present Oppenheim’s and Schur’s determinantal in-

equalities for the Khatri-Rao product of two positive semidefinite matrices.

1. Introduction

Oppenheim proved in [2, pp.509] that for n × n positive semidefinite matrices
A = (aij) and B = (bij),

(1.1) det(A ◦B) ≥ detA

(
n∏

i=1

bii

)
,

where A◦B = (aijbij) denotes the Hadamard product (alternatively the entry-wise
product). Marcus called the following inequality (1.2) that improves Oppenheim
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inequality (1.1) as Schur inequality (see [10, Theorem 3.7]):

(1.2) det(A ◦B) + det(AB) ≥ det(A)

(
n∏

i=1

bii

)
+

(
n∏

i=1

aii

)
det(B).

The importance and applicability of the Hadamard multiplication are well
known. In mathematics, for example, this multiplication is used (i) for constructing
discrete equipments by means of integer orthogonal matrices that allow fast trans-
formations, and (ii) for finding the maximum of a determinant. This product has
also been used in combinatorial analysis, finite geometry, group theory, number the-
ory, and regular graphs. Applications of the Hadamard product can also be found in
other fields, for example, in (i) correcting codes in satellite transmissions and cryp-
tography, (ii) communication and information theory, (iii) signal processing and
pattern recognition, (iv) neural behavior, and (v) lossy compression algorithms as
images in JPEG format. In statistics, some applications of the Hadamard product
pertain to (i) interrelations between Hadamard matrices and different combinato-
rial configurations such as block-designs, Latin square, and orthogonal F-square, (ii)
linear models, (iii) maximum likelihood estimation of the variances in a multivari-
ate normal population, (iv) multivariate statistical analysis, and (v) multivariate
Tchebycheff equalities. For more details and applications of the Hadamard prod-
uct, interested readers may refer to Vijayan [12], Hedayat and Wallis [3], Styan [10],
Agaian [1], Seberry and Yamada [11], and the references therein. Relevant to this
matrix product, the Khatri-Rao product for partitioned matrices is claimed to be
a generalized Hadamard product (see [4, 8]). Rao and Kleffe [9] and Liu [6] have
compiled several matrix inequalities involving the Khatri-Rao product.

The set of all complex matrices partitioned into m × n blocks with each block
p× q is denoted by Mm,n(Mp,q), and we simply denote as Mn(Mk) := Mn,n(Mk,k).
In this article, we generalize the Oppenheim inequality and the Schur inequality for
the Khatri-Rao product on Mn(Mk).

2. Preliminaries

We introduce the definitions of three matrix products, namely the Hadamard,
Kronecker and Khatri-Rao products. We then give several identities involving the
Khatri-Rao products.

Let A = (aij) and B = (bij) of size m× n and C = (ckl) of size p× q.

(1) Hadamard product
A ◦B = (aijbij),

where the scalar aijbij is the (i, j)th entry. Note that A ◦B is of size m× n.

(2) Kronecker product
A⊗ C = (aijC),

where aijC is the (i, j)th block submatrix of size p × q. Note that A ⊗ B is
of size mp× nq.
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Let A = (Aij) be partitioned with Aij of size mi×nj as the (i, j)th block submatrix
and B = (Bkl) be partitioned with Bkl of size pk×ql as the (k, l)th block submatrix.

(3) Khatri-Rao product
A ∗B = (Aij ⊗Bij)

where Aij ⊗Bij is of size mipi× njqj . Note that A ∗B is of size (
∑

mipi)×
(
∑

njqj).

Theorem 2.1. Let A,B,C and D be comparible partitioned matrices. Then

(a) A ∗B 6= B ∗A, in general.

(b) (A ∗B)∗ = A∗ ∗B∗, where A∗ is the complex conjugate transpose of A.

(c) (A + B) ∗ (C + D) = A ∗C + A ∗D + B ∗C + B ∗D.

(d) (A ∗B) ∗C = A ∗ (B ∗C).

(e) (A ∗B) ◦ (C ∗D) = (A ◦C) ∗ (B ◦D).

Proof. Straightforward. 2

For Hermitian matrices A and B, we write A ≥ B in the sense of Loewner
partial ordering, which means that A − B is positive semidefinite. Liu [7] proved
that A ∗B is positive semidefinite if A and B are positive semidefinite.

Lemma 2.2.([7]) Let A,B,C and D be compatibly partitioned matrices such that
A ≥ B ≥ 0 and C ≥ D ≥ 0. Then

A ∗C ≥ B ∗D ≥ 0.

If A =

(
A11 A12

A21 A22

)
, then the Schur complement of A22 in A is given by

A/A22 := A11 −A12A
−1
22 A21

and the Schur complement of A11 in A is given by

A/A11 := A22 −A21A
−1
11 A12.

In the case that A11 or A22 is singular, the inverses on A/A11 and A/A22 can be
replaced by a generalized inverse.

Lemma 2.3.([2, Theorem 7.7.7]) Let A =

(
A11 A12

A∗
12 A22

)
be Hermitian with A11 ∈

Mp and A22 ∈Mq. The following are equivalent:

(a) A is positive definite.
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(b) A11 is positive definite and A/A11 is positive definite.

3. Main Results

We generalize Oppenheim’s inequality for the Khatrio-Rao product.

Theorem 3.1. Let A,B ∈Mn(Mk). If A,B are positive semidefinite, then

(3.1) det(A ∗B) ≥

(
detA ·

n∏
i=1

detBii

)k

.

Proof. We use induction with respect to n. If n = 1,

det(A ∗B) = det(A⊗B) = (detA)k(detB)k = (detA)k(detB11)k.

Let n ≥ 2 and assume that (3.1) is true for matrices in Mn−1(Mk). Consider the
partition

A =

(
A1 a
a∗ Ann

)
, B =

(
B1 b
b∗ Bnn

)
,

where A1,B1 ∈ Mn−1(Mk), a,b ∈ Mn−1,1(Mk). Assume first that A and B are
positive definite. Then Schur’s determinant formula for block matrices gives
(3.2)

det(A ∗B) = det

(
A1 ∗B1 a ∗ b
a∗ ∗ b∗ Ann ⊗Bnn

)
= det(A1 ∗B1) · det

(
Ann ⊗Bnn − (a∗ ∗ b∗)(A1 ∗B1)−1(a ∗ b)

)
.

According to Lemma 2.2, the matrix A ∗B is positive definite. Therefore,

(3.3) (A ∗B)/(A1 ∗B1) = Ann ⊗Bnn − (a∗ ∗ b∗)(A1 ∗B1)−1(a ∗ b) ≥ 0

by Lemma 2.3. Moreover,

C :=

(
A1 a
a∗ a∗A−1

1 a

)
is positive semidefinite. Hence

C ∗B =

(
A1 ∗B1 a ∗ b
a∗ ∗ b∗ a∗A−1

1 a⊗Bnn

)
≥ 0

and

(3.4) (C ∗B)/(A1 ∗B1) = a∗A−1
1 a⊗Bnn − (a∗ ∗ b∗)(A1 ∗B1)−1(a ∗ b) ≥ 0.

Note that

Ann ⊗Bnn − (a∗ ∗ b∗)(A1 ∗B1)−1(a ∗ b)
= (Ann − a∗A−1

1 a)⊗Bnn + a∗A−1
1 a⊗Bnn − (a∗ ∗ b∗)(A1 ∗B1)−1(a ∗ b)
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Since (Ann − a∗A−1
1 a) ⊗ Bnn is positive definite, we obtain from (3.3) and (3.4)

that

(3.5) det
(
Ann⊗Bnn−(a∗∗b∗)(A1∗B1)−1(a∗b)

)
≥ det

(
(Ann−a∗A−1

1 a)⊗Bnn

)
.

From (3.2), (3.5), and the induction assumption it follows that

det(A ∗B) ≥ det(A1 ∗B1) · det
(
(Ann − a∗A−1

1 a)⊗Bnn

)
≥

(
detA1 ·

n−1∏
i=1

detBii

)k

·
(
det(Ann − a∗A−1

1 a)
)k

(detBnn)k

=

(
detA ·

n∏
i=1

detBii

)k

.

Thus (3.1) is proved for positive definite matrices and can be extended to positive
semidefinite matrices by a continuity argument. 2

Lemma 3.2. Let A =

(
A11 A12

A∗
12 A22

)
, B =

(
B11 B12

B∗
12 B22

)
∈ Mn(Mk) with

A11,B11 ∈ Mm(Mk), A12,B12 ∈ Mm,n−m(Mk) (m < n). If A and B are positive
definite, then

(A ∗B)/(A11 ∗B11) + (A/A11) ∗ (B/B11) ≥ A22 ∗ (B/B11) + (A/A11) ∗B22.

In particular, for m = 1

(A ∗B)/(A11 ∗B11) + (A/A11)⊗ (B/B11) ≥ A22 ⊗ (B/B11) + (A/A11)⊗B22.

Proof. Let

C =

(
A11 A12

A∗
12 A∗

12A
−1
11 A12

)
and

D =

(
B11 B12

B∗
12 B∗

12B
−1
11 B12

)
.

Then C and D are positive semidefinite. Therefore,

C ∗D =

(
A11 ∗B11 A12 ∗B12

(A12 ∗B12)∗ (A∗
12A

−1
11 A12) ∗ (B∗

12B
−1
11 B12)

)
is positive semidefinite and so

(A∗
12A

−1
11 A12) ∗ (B∗

12B
−1
11 B12) ≥ (A12 ∗B12)∗(A11 ∗B11)−1(A12 ∗B12).

That is,

(3.6) (A22 −A/A11) ∗ (B22 −B/B11) ≥ A22 ∗B22 − (A ∗B)/(A11 ∗B11).
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Expanding (3.6) gives the required result. 2

Lemma 3.3. Let A =

(
A11 A12

A∗
12 A22

)
, B =

(
B11 B12

B∗
12 B22

)
∈ Mn(Mk) with

A11,B11 ∈ Mm(Mk), A12,B12 ∈ Mm,n−m(Mk) (m < n). If A and B are positive
definite, then

(A ∗B)/(A11 ∗B11) ≥ A22 ∗ (B/B11) ≥ (A/A11) ∗ (B/B11)(3.7)

(A ∗B)/(A11 ∗B11) ≥ (A/A11) ∗B22 ≥ (A/A11) ∗ (B/B11).(3.8)

Proof. Since A22 ≥ A/A11, by Lemma 2.2, we get

A22 ∗ (B/B11) ≥ (A/A11) ∗ (B/B11).

This proves the second inequality in (3.7). Since B22 ≥ B/B11, we get similarly

(3.9) (A/A11) ∗B22 ≥ (A/A11) ∗ (B/B11).

By Lemma 3.2,

(A ∗B)/(A11 ∗B11) ≥ A22 ∗ (B/B11) +
(
(A/A11) ∗B22 − (A/A11) ∗ (B/B11)

)
≥ A22 ∗ (B/B11).

The second inequality follows from (3.9). Similarly, we can prove (3.8). 2

Lemma 3.4.([5]) Let A,B,C,D be positive semidefinte matrices. If A+B ≥ C+D,
A ≥ C ≥ B and A ≥ D ≥ B, then

detA + detB ≥ detC + detD.

For A = (Aij)
n
i,j=1 ∈ Mn(Mk), we denote as Ap = (Aij)

p
i,j=1 ∈ Mp(Mk) the

p× p leading principal block submatrix of A.

Proposition 3.5. Let A,B ∈Mn(Mk). If A,B are positive definite, then
(3.10)

det(A∗B) ≥ (detAB)k×
n∏

p=2

((
detApp detAp−1

detAp

)k

+

(
detBpp detBp−1

detBp

)k

− 1

)
.

Proof. Let 2 ≤ p ≤ n. By Lemma 3.2, we have

(Ap∗Bp)/(Ap−1∗Bp−1)+(Ap/Ap−1)⊗(Bp/Bp−1) ≥ App⊗(Bp/Bp−1)+(Ap/Ap−1)⊗Bpp.

Also, by Lemma 3.3, we have

(Ap ∗Bp)/(Ap−1 ∗Bp−1) ≥ App ⊗ (Bp/Bp−1) ≥ (Ap/Ap−1)⊗ (Bp/Bp−1)
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and

(Ap ∗Bp)/(Ap−1 ∗Bp−1) ≥ (Ap/Ap−1)⊗Bpp ≥ (Ap/Ap−1)⊗ (Bp/Bp−1).

Thus, by Lemma 3.4, we have

det
(
(Ap ∗Bp)/(Ap−1 ∗Bp−1)

)
+ det

(
(Ap/Ap−1)⊗ (Bp/Bp−1)

)
≥ det

(
App ⊗ (Bp/Bp−1)

)
+ det

(
(Ap/Ap−1)⊗Bpp

)
.

That is,

det(Ap ∗Bp)

det
(
Ap−1 ∗Bp−1

) = det
(
(Ap ∗Bp)/(Ap−1 ∗Bp−1)

)
≥ det

(
App ⊗ (Bp/Bp−1)

)
+ det

(
(Ap/Ap−1)⊗Bpp

)
−det

(
(Ap/Ap−1)⊗ (Bp/Bp−1)

)
=

(
detApp detBp

detBp−1

)k

+

(
detAp detBpp

detAp−1

)k

−
(

det(ApBp)

det(Ap−1Bp−1)

)k

=
det(ApBp)k

det(Ap−1Bp−1)k

×

((
detApp detAp−1

detAp

)k

+

(
detBp−1 detBpp

detBp

)k

− 1

)
.

Thus,

n∏
p=2

det(Ap ∗Bp)

det
(
Ap−1 ∗Bp−1

)
≥

n∏
p=2

det(ApBp)k

det(Ap−1Bp−1)k

((
detApp detAp−1

detAp

)k

+

(
detBp−1 detBpp

detBp

)k

− 1

)
which coincides with (3.10). 2

Lemma 3.6.([Fisher’s inequality]) Suppose that

A =

[
A11 A12

A21 A22

]
is a positive definite matrix that is partitioned so that A11 and A22 are square and
nonempty. Then

detA ≤ (detA11)(detA22).

Lemma 3.7.([5]) Let ak, bk ≥ 1 for all k = 1, . . . , n. Then

n∏
k=1

(ak + bk − 1) ≥
n∏

k=1

ak +

n∏
k=1

bk − 1.
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We generalize Schur’s inequality.

Theorem 3.8. Let A,B ∈Mn(Mk). If A,B are positive semidefinite, then

(3.11) det(A ∗B) + det(AB)k ≥

(
detA

n∏
p=1

detBpp

)k

+

(
detB

n∏
p=1

detApp

)k

.

Proof. If any of App, Bpp in (3.11) is singular, then so is A or B. In this case the
right hand side of (3.11) vanishes. So without loss of generality, we can indeed
assume that A and B are positive definite by a continuous argument.

We may rewrite (3.11) as

(3.12) det(A ∗B) ≥ det(AB)k

(∏n
p=1 detApp

detA

)k

+

(∏n
p=1 detBpp

detB

)k

− 1

 .

By Lemma , we have
detApp detAp−1

detAp
≥ 1 and

detBpp detBp−1

detBp
≥ 1 in (3.10) for

p = 2, . . . , n. Then

n∏
p=2

detApp detAp−1

detAp
=

(
n∏

p=2

detApp

)(
detA1

detA2

detA2

detA3
· · · detAn−1

detAn

)
=

(
n∏

p=2

detApp

)
detA1

detAn

=

∏n
p=1 detApp

detA
.

Similarly, we have

n∏
p=2

detBpp detBp−1

detBp
=

∏n
p=1 detBpp

detB
.

Thus, (3.12) follows from Proposition 3.5 and Lemma 3.7. 2

4. Concluding Remarks

The Hadamard product plays an important role in matrix methods for statistics
and econometrics. Relevant to this matrix product, the Khatri-Rao product for
partitioned matrices is claimed to be a generalized Hadamard product. In this
paper, we have established the generalized Oppenheims and Schurs inequalities
for the Khatrio-Rao product. We can get the lower bound of the determinant of
Khatri-Rao product of partitioned positive semidefinite matrices.
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