DOI QR코드

DOI QR Code

Determination of fucoxanthin in cosmeceutical products by HPLC-PDA

HPLC-PDA를 이용한 기능성 화장품 중 푸코잔틴의 정량

  • Choi, Jongkeun (Department of Integrated Materials Engeneering, Chungwoon University)
  • 최종근 (청운대학교 융합소재공학과)
  • Received : 2017.09.13
  • Accepted : 2017.12.08
  • Published : 2017.12.31

Abstract

This study was conducted to establish an analytical method using an HPLC system equipped with a photodiode array (PDA) detector for the quality control of raw materials and cosmeceuticals containing fucoxanthin as an active ingredient. The column was octadecyl-functionalized silica gel and the measurement wavelength of the PDA was set to 499 nm. To validate the analytical method, the linearity of the calibration curve, detection limit, reproducibility and recovery rate were investigated and good results were obtained. The correlation coefficient of the calibration curve was 1.000 and the linearity was good in the concentration range of 0.5 ~ 100 ppm. Moreover, the limit of detection (LOD) was 0.1 ppm and the limit of quantification (LOQ) was 0.5 ppm. The results of the peak reproducibility test used for evaluating the system suitability showed that the RSD (n = 5) of the peak area was 2.0% and that of the retention time was 0.09%. In the spiking test, the recovery rate was $101.6{\pm}0.77%$. The fucoxanthin contents of the two kinds of fucoxanthin-containing raw materials were $49.6{\pm}3.3%$ and $1.03{\pm}0.016%$, respectively. In addition, the fucoxanthin content in the test product, which was intended to be 150 ppm, was $156.7{\pm}4.7ppm$. From the above results, it was concluded that this method could be applied to the quantitative analysis of fucoxanthin in cosmeceuticals.

푸코잔틴을 함유한 원료 및 이를 유효성분으로 처방된 기능성 화장품의 품질관리를 위하여 photodiode array (PDA) 검출기를 갖춘 HPLC를 이용한 분석법을 확립하고 원료 및 제품 함량 분석에 응용하고자 본 연구를 수행하였다. 컬럼은 옥타데실화한 실리카 겔을 충진한 것을 사용하였으며 PDA의 측정파장은 499 nm로 설정하였다. 분석법을 밸리데이션하기 위하여 검량선의 직선성, 검출 및 정량 한계, 재현성, 회수율을 조사한 결과 양호한 결과를 얻었다. 검량선의 상관계수는 1.000로 0.5 ~ 100 ppm의 농도에서 직선성이 양호하였다. 또한 검출 한계는 0.1 ppm이었으며 정량 한계는 0.5 ppm이었다. 시스템의 적합성을 확인하기 위하여 피크의 재현성을 평가한 결과 피크 면적 값의 RSD (n=5) 값은 2.0%이었으며 머무름 시간의 RSD는 0.09% 이었다. 표준물질 첨가법의 실험 결과 회수율은 $101.6{\pm}0.77%$이었다. 끝으로 확립된 분석법을 원료 및 제품 분석에 적용하였다. 두 종류의 푸코잔틴 함유 원료의 푸코잔틴 함량은 각각 $49.6{\pm}3.3%$$1.03{\pm}0.016%$이었다. 또한 푸코잔틴이 150 ppm이 되도록 처방한 제품의 푸코잔틴의 함량은 $156.7{\pm}4.7ppm$으로 확인되었다. 위 실험결과로 볼 때 본 실험방법은 기능성 화장품에서 푸코잔틴을 정량분석하는 것에 적용될 수 있을 것으로 판단되었다.

Keywords

References

  1. A. El-Agamey, G. M. Lowe, D. J. McGarvey, A. Mortensen, D. M. Phillip, T. G. Truscott, A. J. Young, "Carotenoid radical chemistry andantioxidant/pro-oxidant properties", Arch. Biochem. Biophys., vol. 430, pp. 37-48, 2004. DOI: https://doi.org/10.1016/j.abb.2004.03.007
  2. J. Peng, J. P. Yuan, C. F. Wu, J. H. Wang, "Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health", Mar. Drugs, vol. 9, pp. 1806-1828, 2011. DOI: https://doi.org/10.3390/md9101806
  3. R. Pangestuti, S. -K. Kim, "Biological activities and health benefit effects of natural pigments derived from marine algae", J. Funct. Foods, vol. 3, pp. 255-266, 2011. DOI: https://doi.org/10.1016/j.jff.2011.07.001
  4. V. M. Dembitsky, T. Maoka, "Allenic and cumulenic lipids", Prog. Lipid Res., vol. 46, pp. 328-375, 2007. DOI: https://doi.org/10.1016/j.plipres.2007.07.001
  5. S. J. Heo, W. J. Yoon, K. N. Kim, G. N. Ahn, S. M. Kang, D. H. Kang, A. Affan, C. Oh, W. K. Jung, Y. J. Jeon, "Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW264.7 macrophages", Food Chem. Toxicol., vol. 48, pp. 2045-2051, 2010. DOI: https://doi.org/10.1016/j.fct.2010.05.003
  6. A. Jimenez-Escrig, I. Jimenez-Jimenez, R. Pulido, F. Saura-Calixto, "Antioxidant activity of fresh and processed edible seaweeds", J. Sci. Food Agric., vol. 81, pp. 530-534, 2001. DOI: https://doi.org/10.1002/jsfa.842
  7. I. Urikura, T. Sugawara, T. Hirata, "Protective effect of fucoxanthin against UVB-induced skin photoaging in hairless mice", Biosci. Biotechnol. Biochem., vol. 75, pp. 757-760, 2011. DOI: https://doi.org/10.1271/bbb.110040
  8. N. M. Sachindra, E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, K. Miyashita, "Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites", J. Agric. Food Chem., vol. 55, pp. 8516-8522, 2007. DOI: https://doi.org/10.1021/jf071848a
  9. F. Beppu, M. Hosokawa, M. J. Yim, T. Shinoda, K. Miyashita, "Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice", Lipids, vol. 48, pp. 449-455, 2013. DOI: https://doi.org/10.1007/s11745-013-3784-4
  10. Y. Satomi, "Antitumor and cancer-preventative function of fucoxanthin: a marine carotenoid", Anticancer Res., vol. 37, pp. 1557-1562 2017. DOI: https://doi.org/10.21873/anticanres.11484
  11. S. Y. Kang, H. Kang, J. E. Lee, C. S. Jo, C. B. Moon, J. Ha, J. S. Hwang, J. Choi, "Anti-aging potential of fucoxanthin concentrate derived from Phaeodactylum tricornumtum", J. Cosmet. sci., submitted, 2017.
  12. C. Kumar, P. Ganesan, P. Suresh, N. Bhaskar, C. S. Kumar, P. Ganesan, P. V. Suresh, C. S. Ananda Kumar, P. V. Suresh, S. K. Chandini, "Seaweeds as a source of nutritionally beneficial compounds-a review", J. Food Sci. Technol., vol. 45, pp. 1-13, 2008.
  13. M. Hosokawa, T. Okada, N. Mikami, I. Konishi, K. Miyashita, "Bio-functions of marine carotenoids", Food Sci. and Biotechnol., vol. 18, pp. 1-11, 2009.
  14. J. A. Haugan, S. Liaaen-Jensen, "Improved isolation procedure for fucoxanthin", Phytochemistry, vol. 28, pp. 2797-2798, 1989. DOI: https://doi.org/10.1016/S0031-9422(00)98091-9
  15. S. C. Shin, M. W. Ahn, J. S. Lee, Y. S. Kim, K. P. Park, "Extraction of fucoxanthin from Undaria pinnatifida and stability of fucoxanthin", Korean Chem. Eng. Res., vol. 51, pp. 42-46, 2013. DOI: https://doi.org/10.9713/kcer.2013.51.1.42
  16. S. M. Kim, Y. J. Jung, O. N. Kwon, K. H. Cha, B. H. Um, D. Chung, C. H. Pan, "A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum", Appl. Biochem. Biotechnol., vol. 166, pp. 1843-1855, 2012. DOI: https://doi.org/10.1007/s12010-012-9602-2
  17. S. C. Foo, F. M. Yusoff, M. Ismail, M. Basri, S. K. Yau, N. M. H. Khong, K. W. Chan, M. Ebrahimi, "HPLC fucoxanthin profiles of a microalga, a macroalga and a pure fucoxanthin standard", Data Brief., vol. 10, pp. 583-586, 2017. DOI: https://doi.org/10.1016/j.dib.2016.12.047
  18. P. Crupi, A. T. Toci, S. Mangini, F. Wrubl, L. Rodolfi, M. R. Tredici, A. Coletta, D. Antonacci, "Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled with positive electrospray ionization", Rapid Commun. Mass Spectrom., vol. 15, pp. 1027-1035, 2013. DOI: https://doi.org/10.1002/rcm.6531
  19. A. Piovan, R. Seraglia, B. Bresin, R. Caniato, R. Filippini, "Fucoxanthin from Undaria pinnatifida: photostability and coextractive effects", Molecules, vol. 18, pp. 6298-6310, 2013. DOI: https://doi.org/10.3390/molecules18066298