DOI QR코드

DOI QR Code

Experimental Study on Stability of Revetment on Inland Slope of River Levee for Prevention of Failure due to Overtopping

제방뒷비탈 월류보호공의 안정성 분석을 위한 수리실험 연구

  • Kim, Sooyoung (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Yoon, Kwang Seok (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 김수영 (한국건설기술연구원 수자원.하천연구소) ;
  • 윤광석 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2017.10.30
  • Accepted : 2017.12.08
  • Published : 2017.12.31

Abstract

Recently, the intensity and frequency of floods has increasing worldwide, and flood disasters have become a big problem. Flood disasters, which account for the largest portion of disasters, are floods accompanied by typhoons and localized heavy rainfall. As a result, they cause damage of levee overtopping, in which the water level of a river rises to the levee crown. Therefore, countermeasures are essential and necessary because of the damage to the facility itself as well as to life and other property. The damage magnitude depends on the collapse of the levee. A levee that is difficult to collapse will reduce the discharge inland significantly. Accordingly, the protection of the inland slope, where the collapse of the levee is initiated, is one of the most important countermeasures In this study, revetments with various porosity and forms were suggested and hydraulic experiments were carried out for each type. The hydraulic experiments showed that the stability of a revetment in an inland slope is strongly correlated with the weight per unit area of the revetment. The relationship between the critical velocity, which is the velocity at the moment of leaving the revetment, and the weight per unit area was derived. Through this study, by applying the nature friendly revetment, which has not yet been applied to Korea, it is expected that life and property damage caused by levee overtopping during flooding can be reduced, and a nature friendly river space can be constructed.

본 최근 전 세계적으로 홍수의 강도와 빈도가 증가하고 있어 홍수재해가 큰 문제로 대두되고 있다. 이 중 가장 큰 비중을 차지하는 홍수재해는 태풍 및 집중호우와 동반되는 홍수라고 할 수 있다. 이로 인해 하천의 수위가 제방의 둑마루까지 상승하여 월류하는 피해가 발생하고 있으며 이러한 피해는 시설물 자체의 피해뿐만 아니라 제내지의 인명 및 재산피해도 함께 유발시킨다는 점에서 대책 마련이 시급하다. 제방이 월류하였을 때 제방이 붕괴되는 것과 붕괴하지 않고 단순 월류하는 경우의 피해정도는 매우 다르며 제방 자체의 피해는 발생하더라도 붕괴되지 않으면 제내지로 유입되는 유량을 현저히 감소시켜 홍수피해를 감소시킬 수 있다. 따라서 제방의 붕괴가 발달하기 시작하는 뒷비탈의 보호는 중요한 홍수방어방법의 하나다. 본 연구에서는 제방뒷비탈 월류보호공의 형상과 유공율에 따라 수리학적으로 유리한 보호공을 제안하고 각 보호공의 안정성 검토를 위하여 수리실험을 수행하였다. 수리실험을 통해 제방뒷비탈 보호공의 안정성은 보호공의 단위면적당 중량과 높은 상관성이 있음을 규명하고, 보호공이 이탈되는 순간의 유속인 한계유속과 단위면적당 중량과의 관계식을 도출하였다. 본 연구결과를 통하여 국내에서는 아직 도입되지 않은 자연친화적 월류보호공이 현장에 적용됨으로써 홍수시 월류에 의해 발생하는 인명 및 재산피해를 경감시키고, 더 나아가서는 자연친화적인 하천공간이 조성될 수 있을 것으로 기대된다.

Keywords

References

  1. Ministry of Construction Transportation, Development of Advanced Technologies for Levees, 2004.
  2. Uno, T., Kamiya, K. and Tanaka, K, "The distribution of sand void diameter by air intrusion method and moisture characteristic curve method", Doboku Gakkai Ronbunshu, 1998(603), pp. 35-44, 1998. DOI: https://doi.org/10.2208/jscej.1998.603_35
  3. Fujita, Y., Tamura, T. & Muramoto, Y. "Experiments on Enlarging Process of River Bank Breaches" University of Tokyo, Institute of Hazard Mitigation, Annual Report no. 27, pp. B-2, 1984.
  4. Apel, H., Thieken, A. H., Merz, B.and Bloschl, G., "A probabilistic modelling system for assessing flood risks", Natural hazards, vl. 38, no. 1, pp. 79-100, 2006. DOI: https://doi.org/10.1007/s11069-005-8603-7
  5. Coleman, S. E., Andrews, D. P. and Webby, M. G., "Overtopping breaching of noncohesive homogeneous embankments" Journal of Hydraulic Engineering, vol. 128, no. 9, pp. 829-838, 2002. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(829)
  6. Chinnarasri, C., Tingsanchali, T., Weesakul, S., and Wongwises, S. "Flow patterns and damage of dike overtopping" International Journal of Sediment Research, vol. 18, no. 4, pp. 301-309, 2003.
  7. Frenette, R., & Pestov, I., "Flow and erosive stresses at the base of a headcut" Journal of Hydraulic Engineering, vol. 131, no. 2, pp. 139-141, 2005. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(139)
  8. Ministry of construction Japanese Government, Design Guideline of River Levee, 2000.
  9. Pan, Y., Li, L., Amini, F., & Kuang, C. "Influence of three levee-strengthening systems on overtopping hydraulic parameters and hydraulic equivalency analysis between steady and intermittent overtopping" Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 139, no. 4, pp. 256-266. 2012. DOI: https://doi.org/10.1061/(ASCE)WW.1943-5460.0000179
  10. Li, L., Amini, F., Pan, Y. & Li, C. "Stability Monitoring of Articulated Concrete Block Strengthened Levee in Combined Wave and Surge Overtopping Conditions" In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability pp. 262-271, 2014.
  11. Escarameia, M., & May, R.W.P., "Stability of Riprap and Concrete Blocks in Highly Turbulent Flows" Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, vol. 112, no. 3, pp. 227-237, 1995. DOI: https://doi.org/10.1680/iwtme.1995.27885
  12. Escarameia, M. & May, R.W.P. "Channel protection-Turbulence downstream of structures", Report SR 313, HR Wallingford, 1992.
  13. Pilarczyk, K.W. "Stability Criteria for Revetments", Hydraulic Engineering, Proceedings of the 1990 National Conference, American Society of Civil Engineers, New York. pp. 245-250, 1990.
  14. JICE(Japan Institute of Construction Engineering), Dynamic Design of Revetments, Sankaido, 2007.
  15. Construction Industry Research and Information Association (CIRIA), Design of reinforced grass waterways. Report 116, London, 1987.