DOI QR코드

DOI QR Code

Analysis of Friction Stir Welding Process of Mg alloy by Computational Fluid Dynamics

유동 해석을 통한 마그네슘 합금의 마찰교반용접 분석 연구

  • Kim, Moosun (Metropolitan Transit Convergence Research Division, Korea Railroad Research Institute) ;
  • Sun, Seung-Ju (Advanced Materials Research Team, Korea Railroad Research Institute) ;
  • Kim, Jung-Seok (Advanced Materials Research Team, Korea Railroad Research Institute)
  • 김무선 (한국철도기술연구원 광역도시철도융합연구실) ;
  • 선승주 (한국철도기술연구원 첨단소재연구팀) ;
  • 김정석 (한국철도기술연구원 첨단소재연구팀)
  • Received : 2017.10.27
  • Accepted : 2017.12.08
  • Published : 2017.12.31

Abstract

Friction Stir Welding is a metal welding technique, in which friction heat between a welding tool and a welding material is used to weld parts at temperatures below the melting point of a material. In this study, the temperature and velocity changes in a magnesium alloy (AZ31) during the welding process were analyzed by computational flow dynamics technique while welding the material using a friction stir welding technique. For the analysis, the modeling and analysis were carried out using Fluent as a fluid analysis tool. First, the welding material was assumed to be a temperature-dependent Newtonian fluid with high viscosity, and the rotation region and the stationary region were simulated separately to consider the rotational flow generated by the rotation of the welding tool having a helical groove. The interface between the welding tool and welding material was given the friction and slip boundary conditions and the heat transfer effect to the welding tool was considered. Overall, the velocity and temperature characteristics of the welded material according to time can be understood from the results of transient analysis through the above flow analysis modeling.

마찰 교반 용접(Friction Stir Welding)은 금속 소재 대상으로 용접 툴과 용접 재료의 마찰열을 이용하여 재료 융점 이하의 온도에서 접합하는 용접 기법이다. 이번 연구에서는 금속 접합시 쓰이는 마찰 교반 용접 기법을 활용하여 마그네슘 합금(AZ31)을 용접할 때, 용접시 발생하는 용접 대상인 마그네슘 합금의 온도 및 속도 변화에 대해 유동 해석 기법을 활용하여 분석하였다. 분석을 위해 유동 해석 툴인 플루언트를 활용하여 모델링 및 해석을 진행하였다. 먼저 용접 소재는 온도에 따라 변하는 고점도 뉴턴 유체로 가정하였으며, 나선형 홈이 있는 용접 툴의 회전에 의한 회전 유동 발생을 모사하기 위해 회전 영역과 정지 영역으로 구분하여 모사하였다. 용접 툴과 용접 재료 사이의 인터페이스는 마찰 및 미끄러짐 경계조건을 부여하여 용접 툴로의 열전달 효과를 고려하였다. 위의 유동 해석 모델링을 통한 과도 해석 결과로부터 시간의 변화에 따른 용접 소재의 속도와 온도 특성을 파악할 수 있었다.

Keywords

References

  1. H. I. Dawood, K. S. Mohammed, M. Y. Rajab, "Advantages of the green solid state FSW over the conventional GMAW process", Advances in Materials Science and Engineering, vol. 2014, pp. 1-10, 2014. DOI: https://doi.org/10.1155/2014/105713
  2. S. Sun, J. Kim, W. Lee, "Evaluation on Temperature of FSW Zone of Magnesium Alloy using Experiment and FE Analysis", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 7, pp. 434-441, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.7.434
  3. S. Sun, J. Kim, W. Lee, J. Lim, "Evaluation of Mechanical Properties of Extruded Magnesium Alloy Joints by Friction Stir Welding : Effect of Welding Tool Geometry", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 10, pp. 280-288, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.10.280
  4. W. Lee, J. Kim, S. Sun, J. Lim, "Characteristics of Dissimilar Materials Al alloy(A6005)-Mg alloy(AZ61) Under Friction Stir Welding for Railway Vehicle", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 8, pp. 706-713, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.8.706
  5. K. Gok, M. Aydin, "Investigations of friction stir welding process using finite element method", Int J Adv Manuf Technol, vol. 68, pp. 775-780. DOI: https://doi.org/10.1007/s00170-013-4798-z
  6. P.A. Colegrove, H.R.Shercliff, "3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile", Journal of Materials Processing Technology, vol. 169, pp. 320-327, 2005. DOI: https://doi.org/10.1016/j.jmatprotec.2005.03.015
  7. S.D. Ji, Q.Y. Shi, L.G. Zhang, A.L. Zou, S.S. Gao, L.V.Zan, "Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry", Computational Materials Science, vol. 63. pp. 218-226, 2012. DOI: https://doi.org/10.1016/j.commatsci.2012.06.001
  8. A.N. Albakri, B. Mansoor, H. Nassar, M. K. Khraisheh, "Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy-A numerical and experimental investigation", Journal of Materials Processing Technology, vol. 213, pp. 279-290, 2013. DOI: https://doi.org/10.1016/j.jmatprotec.2012.09.015
  9. W. Gale, T. Totemeier, Smithells Metals Reference Book (8th Edition), Elsvier, 2004.
  10. N. Nguyen, O.S. Seo, C.A. Lee, M. Lee, J. Kim, H.Y. Kim, "Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures", Materials, vol. 7, pp. 1271-1295, 2014. DOI: https://doi.org/10.3390/ma7021271