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It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the 
CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene 
transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the 
spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of 
proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression.
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Introduction

Genomes form higher-order chromatin structures during 
cellular development and differentiation [1-4]. The spatial 
folding of chromosomes and their organization in the 
nucleus have profound effects on gene expression [5, 6]. It is 
now well established that chromosomal architecture is largely 
mediated by the CCCTC-binding factor (CTCF)/cohesin 
complex [7, 8]. CTCF, a zinc finger DNA-binding protein 
that functions in transcriptional repression, activation, and 
as an insulator that interferes with enhancer–promoter 
interactions [9], is needed for the recruitment of cohesin to 
chromatin [10]. In addition to its major influence on sister 
chromatid cohesion [11], cohesin affects gene transcription 
by facilitating long-range interactions between members of 
many developmentally regulated gene families [12-14].

Interphase chromosomes of higher eukaryotes are sub-
divided into evolutionarily conserved topologically associa-
ted domains (TADs) in the three-dimensional space of the 
nucleus (Fig. 1) [15, 16]. TADs are defined as self-asso-
ciating chromosome segments enclosed by a chromatin loop 
in the megabase range detected by Hi-C methods [17]. TADs 
show a high frequency of interactions within domains and a 
low frequency of interactions among different domains [15, 
17]. They are partitioned into several subcompartments 

related to their gene expression patterns and maintained 
across cell types, suggesting that TADs shape the regulatory 
landscape of the genome during development [6, 15, 16]. 
Interestingly, in the boundaries of TADs, there is an abun-
dance of the architectural protein CTCF and cohesin [6, 15], 
suggesting that these proteins have a role in establishing the 
topological boundaries [17].

Increasing evidence from recent studies has indicated that 
genomic instability is spatially related to higher-order 
chromatin organization in cancer cells [18]. Previous studies 
of c-Myc, BCL, and immunoglobulin heavy-chain (Igh) (the 
most common translocation partners in various B-cell lym-
phomas) showed that these loci are preferentially localized 
in close spatial juxtaposition to each other in normal B cells 
[19, 20]. Moreover, the boundaries of copy-number alterations 
are preferentially localized in close spatial juxtaposition 
within the nucleus [21-23]. Thus, the continuous DNA 
damage and subsequent defective repair near double-strand 
break (DSB) sites might generate copy-number alterations 
of oncogenes during tumorigenesis [24, 25]. In addition, the 
recent discovery that DSBs and subsequent amplification of 
estrogen response elements can be generated by estrogen- 
induced long-range chromatin interactions in breast cancer 
[26] further indicates the importance of higher-order 
genome architecture for chromosomal rearrangement. 
Therefore, the close spatial proximity of genomic regions 
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Fig. 1. The spatial folding of chromo-
somes in the nucleus. TADs, topolo-
gically associated domains.

Fig. 2. A schematic representation of CCCTC-binding factor (CTCF)‒
mediated looping structure. TFs, transcription factors.

may provide an opportunity for the formation of specific, 
cancer-related chromosomal translocation events during 
tumor development [18, 27, 28].

Here, we briefly review recent works on the roles of CTCF 
and cohesin in genome folding, their global impact on gene 
expression, and their association with human disease.

Results
CTCF

Chromatin organizer roles of CTCF
CTCF is a sequence-specific DNA-binding protein that 

functions by utilizing an 11-zinc-finger domain [29]. 
Because CTCF was first identified at the 5´ and 3´ ends of 
the chicken β-globin locus [30] and the imprinted Igf2/H19 
locus [31, 32], it is known as an insulator protein that can 
block enhancer activity in eukaryotes [32]. Although 
insulators would be expected to be located in intergenic 
regions where they could act as barriers to block enhancer 
activity [30], genome-wide analysis indicated that CTCF- 
binding sites are present in genes and/or promoter regions 
as well as intergenic regions [10, 33]. More recent evidence 
revealed that almost 15% of CTCF-recognition sites are 
located near promoters and ∼40% are within exons and 
introns [17], suggesting that CTCF has dynamic roles other 
than enhancer blocking activity.

While earlier studies implied that the distribution patterns 
of CTCF are similar to those of transcription activators or 
repressors, recently determined global distribution patterns 
suggested that CTCF-binding sites are not strongly corre-
lated with general transcription factor occupancy [10]. 
Moreover, depletion of CTCF altered its histone acetylation 
and methylation profiles in the β-globin locus, but did not 
significantly affect β-globin expression [34, 35], suggesting 

that CTCF has a role distinct from that of traditional 
regulatory proteins.

Interestingly, CTCF has been shown to serve as a chro-
matin organizer complex by linking chromosomal domains 
in the mouse/human β-globin cluster (Fig. 2) [36, 37]. 
During erythroid differentiation, CTCF is recruited and en-
ables enhancers to physically access promoters of β-globin, 
which both influences transcription and contributes to 
cell-type-specific chromatin organization and function [36, 
37]. Similarly, long-range interactions associated with CTCF 
have been observed within mammalian gene loci including 
the Igf2/H19 imprinted control region [38, 39], the α-globin 
gene cluster in erythroid cells [40], and the Igh locus in B 
cells [41].

DNA methylation and CTCF binding
It has been known for many years that CTCF binding is 

abolished by the DNA methylation of CpG sites within the 
CTCF motif [32]. At the imprinted Igf2/H19 locus, CTCF 
binds specifically to the unmethylated differentially methy-
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Fig. 3. (A, B) Methylation-sensitive 
binding of CCCTC-binding factor 
(CTCF).

lated region (DMR), which is required for the expression of 
H19 on the maternal chromosome (Fig. 3A) [32, 42]. However, 
on the paternal allele, the methylated DMR prohibits CTCF 
enrichment and leads to IGF2 expression [30, 42], sugges-
ting methylation-sensitive binding of CTCF at the target 
region. Interestingly, genome-wide association studies have 
identified that only a small subset of CTCF-binding sites are 
sensitive to the methylation status of DNA [8, 43].

Abnormal DNA methylation patterns of CTCF-binding 
sites are associated with transcriptional regulation of tumor 
suppressor or oncogenic genes in several human cancers 
[44]. CTCF plays an essential role in maintaining INK/ARF 
gene expression and disruption of its binding by DNA 
methylation contributes to the epigenetic silencing of 
INK/ARF genes in human breast cancer cells [45, 46]. 
Epigenetic inactivation of RASSF1A and CDH1 also 
correlates with the epigenetic alteration of CTCF-recog-
nition sites in human breast cancer [46]. Conversely, in one 
study, aberrant DNA methylation led to the prevention of 
CTCF-mediated silencing of the BCL6 gene, thus increasing 
oncogenic BCL6 expression in lymphoma [47]. 

The concept that the methylation-sensitive binding of 
CTCF controls gene expression by changing the chromatin 
architecture has been supported by the finding that CTCF 
alters the chromatin architecture [8]. For instance, in the 
Igf2/H19 locus, Igf2 imprinting on the maternal allele is 
performed by perturbing the proper long-range chromatin 
interactions between the Igf2 gene and a distal enhancer 
through the formation of chromatin loops mediated by 
CTCF (Fig. 3A) [38, 39]. However, on the paternal chro-
mosome, CTCF enrichment at the DMR and insulator 
looping are prevented by DNA methylation, thus ensuring 
physical interaction between the Igf2 gene and the distal 
enhancer and inducing the exclusive expression of the 
paternal allele. Similarly, nucleotide excision repair factor- 

mediated DNA demethylation at the promoter region 
induces the enrichment of CTCF and consequently the 
formation of a looping structure and controls gene expre-
ssion at the RARβ2 locus [48]. We also found that epi-
genetic silencing of PTGS2 correlates with the loss of CTCF 
binding by DNA methylation at the promoter region, 
thereby producing an inappropriate higher-order chromatin 
structure in human gastric cancer cells (Fig. 3B) [49]. 

Somatic mutations at CTCF-binding sites
In several studies, somatic mutations at the coding region 

of the CTCF gene were detected in acute leukemia and 
individuals with intellectual disability [50-52]. However, a 
high frequency of recurrent mutations in the CTCF-binding 
site has been more profoundly found in human cancer [53]. 
Unsurprisingly, single-nucleotide polymorphisms also confer 
disease susceptibility in humans by decreasing the methy-
lation level at differentially methylated CTCF-binding sites 
such as rs2334499 in the 11p15 region [54]. Since genetic 
and/or epigenetic alterations frequently occur in the CTCF 
anchor region in various human cancers [7, 8, 55], these 
mutations can influence gene expression and tumor prog-
ression by abrogating the CTCF-mediated spatial folding of 
chromosomes [56].

Architectural role of CTCF
There is direct evidence that CTCF can physically interact 

with other transcriptional regulators, such as the zinc finger 
protein Yin Yang 1 (YY1), as an X chromosome binary switch 
[57]. CTCF also forms a complex with the SNF2-like chro-
modomain helicase protein (CHD8) [58] and the methyl- 
CpG‒binding protein Kaiso [59] through the zinc-finger 
domain [10]. Thus, CHD8 enhances insulator activity, 
whereas Kaiso has a negative effect on the CTCF-mediated 
enhancer blocking activity [58, 59].
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Fig. 4. A schematic representation of the cohesin complex. Smc,
structural maintenance of chromosomes; Stag, stromal antigen.

Interestingly, the C-terminus of CTCF preferentially 
interacts with the STAG1 or STAG2 subunit of cohesin [60]. 
Furthermore, recent genome-wide studies mapping the 
binding sites of CTCF revealed that CTCF often colocalizes 
with the cohesin complex throughout the genome [61-63]. 
Thus, CTCF is generally thought to be required for the 
localization of cohesin at its binding sites [64]. 

The cohesin complex

Cohesin as a sister chromatid cohesion molecule
Cohesin, a large ring-shaped molecule that can bind DNA 

strands, is a multi-subunit protein complex composed of two 
structural maintenance of chromosomes (SMC) molecules, 
SMC1 and SMC3, either stromal antigen (STAG) STAG1 or 
STAG2, and the kleisin subunit RAD21 (Fig. 4) [9]. Cohesin 
is required to mediate sister chromatid cohesion for proper 
chromosome segregation in the S phase until cell division 
[65]. The cohesin complex was also found to be involved in 
efficient DNA DSB repair [64]. Since cohesin is important 
for holding sister chromatids together following DNA 
replication, mutational inactivation of the cohesin complex 
causes genomic instability and aneuploidy during cell cycle 
progression in human diseases [11]. For example, Cornelia 
de Lange syndrome, a rare autosomal-dominant develop-
mental disorder, is caused by mutation of SMC1, SMC3, 
Rad21, NIPBL, or HDAC8, which encode core components of 
the cohesin complex or proteins that interact with this 
complex [66, 67]. Somatic mutations in the cohesin sub-
units have also been frequently found in several different 
human tumor types [68-71].

Cohesin in transcriptional regulation
Although its role in chromatid cohesion during mitosis is 

well established [65], cohesin was also found to bind thou-
sands of sites on interphase chromosomes [4]. Indeed, 

cohesin interacts with the Mediator complex, a transcrip-
tional coactivator [72], and co-occupies enhancer and pro-
moter regions with it to regulate tissue-specific gene expre-
ssion [4]. High-throughput chromatin immunoprecipita-
tion‒sequence analyses also revealed that cohesin remains 
bound at the transcription factor-binding sites through 
replication to facilitate the re-establishment of transcription 
factor clusters after DNA replication and cell division [12]. 
This suggests that the cohesin complex acts as a transcrip-
tional regulator in cellular proliferation, differentiation, and 
development [8].

Colocalization of cohesin with CTCF
CTCF was originally known as a cohesin loading factor 

[10, 64] because genome-wide studies revealed that cohesin 
globally colocalizes extensively with CTCF throughout the 
genome [61, 62, 73]. However, CTCF depletion did not 
completely impair the entire association of cohesin with 
chromatin [61, 73-75]. Instead, depletion of CTCF was 
shown to reduce the enrichment of cohesin at only a small 
proportion of cohesin-binding sites [61, 74, 75], indicating 
that CTCF facilitates the distribution of cohesin to specific 
sites on chromosomes [8]. In contrast, the depletion of 
RAD21, a core subunit of the cohesin complex [9], does not 
disrupt the enrichment of CTCF, suggesting that CTCF 
binding is independent of the presence of cohesin on 
chromatin [8]. In this context, the following question arises: 
What is the essential role of cohesin at CTCF-binding sites?

Role of CTCF/cohesin in genome folding
Apart from its major function in sister chromatid 

cohesion, it has recently been shown that cohesin acts in 
concert with CTCF to affect higher-order chromosome 
architecture by forming long-range chromosomal interac-
tions in many developmentally regulated gene families [76]. 
For example, cohesin has been shown to play a critical role in 
maintaining CTCF-mediated higher-order chromatin con-
formation at the β-globin and Igf2/H19 loci [37, 39, 41, 74]. 
CTCF and cohesin also stabilize the rearrangement of Igh 
and T-cell receptor loci via long-range chromatin interac-
tions [41, 77, 78].

Although it is not yet clear how CTCF/cohesin mediate 
chromatin looping, CTCF may first bind between two CTCF 
sites and form a complex with cohesin through its C-terminal 
region [60, 79, 80]. Considering the evidence that cohesin 
can tether DNA molecules together [81], a study appeared to 
show that cohesin stabilized long-range chromatin interac-
tions by anchoring DNA strands together within a closed 
ring structure among CTCF/cohesin localization sites [11, 
64, 76]. Interestingly, CTCF/cohesin-mediated chromatin 
looping preferentially occurs between CTCF sites with 
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Fig. 5. Cohesin-mediated higher-order chromatin structures are 
important for the expression and presence of high-level gene 
amplification in cancer cells with chromosomal instability. HSRs, 
homogeneously staining regions; DMs, extrachromosomal double 
minutes.

convergent CTCF DNA motifs [82]. Thus, inverting one site 
of convergent CTCF-binding sites changes the chromatin 
architecture and can alter gene expression [5, 83].

CTCF/cohesin-mediated abnormal higher-order 
chromosome structure during tumor development

Dysregulation of the components of the cohesin complex 
might promote genomic instability by perturbing proper 
long-range chromatin interactions, which can confer the 
spatial proximity required for the rejoining of DSBs during 
chromosomal rearrangement [18]. More recent studies 
support a similar role for the CTCF/cohesin-mediated chro-
matin loop as a regulator of genome integrity [84]. They 
found that chromosome loop anchors bound by CTCF and 
cohesin are vulnerable to continuous DNA breaks and 
translocation breakpoint regions in various cancers are 
enriched at these loop anchors [84]. Similarly, we found that 
cohesin-mediated chromatin organization and DNA 
replication are important for stabilizing gene amplification 
in cancer cells with chromosomal instability (Fig. 5) [85]. 
Although a high frequency of recurrent mutations and 
deletions of the components of the cohesin complex was 
identified in human diseases [70, 71, 86], aberrant overex-
pression of the cohesin complex [9] was also frequently 
detected in various human malignancies [85]. Interestingly, 
we found that overexpression of the cohesin complex in 
mesenchymal cancer cells induces mesenchymal to epithelial 
transition‒specific expression patterns and dynamic cohe-

sin-mediated chromatin structures are responsible for the 
initiation and regulation of essential epithelial to mesen-
chymal transition‒related cell fate changes in human cancer 
(Fig. 6) [87].

An increasing amount of recent evidence has indicated 
that CTCF and cohesin are enriched at TADs [6, 15]. Accor-
dingly, cohesin-associated CTCF loops occur within TADs 
and enhancers generally interact with genes within these 
loops [8]. Interestingly, recurrent mutations occur frequently 
within CTCF anchor sites adjacent to oncogenes or cancer- 
associated genes [55]. Mutation in the isocitrate dehydroge-
nase (IDH) gene promotes susceptibility of the CTCF-bin-
ding sites to DNA methylation and the loss of CTCF binding 
resulting in the disruption of TAD organization in human 
gliomas [88]. Somatic mutations change oncogene-con-
taining insulated neighborhoods, thereby allowing improper 
activation of proto-oncogenes by enhancers located within 
different TADs [89]. Furthermore, disruption of CTCF-me-
diated TAD formation by human noncoding disease variants 
elicits pathogenic phenotypes, providing the mechanistic 
linkage between spatial genomic organization and genetic 
alterations that influence gene expression [90].

Conclusion

Over the past few years, substantial progress has been made 
in understanding three-dimensional genome architecture. 
However, its role in cancer remains incompletely under-
stood. An intriguing issue in this context is that, although 
most topological boundaries are enriched for the binding of 
CTCF, only 15% of CTCF-binding sites are located within 
TAD boundaries [15], suggesting that additional factors 
other than the CTCF/cohesin complex might be required to 
establish the topological domain structure of the genome 
[17]. Further work is needed to clarify the mechanisms 
underlying this level of chromosomal organization, and to 
what extent it generally contributes to the transcriptional 
regulation of genes during tumorigenesis.

While increasing evidence has recently indicated that 
enhancers are located near oncogenic genes and exhibit a 
large number of variants associated with diseases [91], a 
more complete understanding of how epigenetic alteration 
of enhancers directly participates in the development and 
onset of genome reorganization during tumor progression 
remains to be obtained. Based on this point, recently deve-
loped CRISPR/Cas9-based epigenome-editing technology 
has attracted considerable interest because this approach 
can acutely modify the epigenetic landscape of specific 
regulatory elements [92]. For example, targeted editing of 
the DNA methylation status of CTCF-binding sites changes 
CTCT recruitment, thereby altering the expression of genes 
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Fig. 6. Cohesin-mediated dynamic 
chromatin architecture of the TGFB1
and ITGA5 genes associated with 
epithelial to mesenchymal transition 
(EMT) plasticity. MET, mesenchymal 
to epithelial transition.

by influencing the organization of higher-order chromatin 
structures [93]. Furthermore, a high-throughput CRISPR 
activation system was also used to reveal how noncoding 
variation associated with human immune dysfunction alters 
stimulation-dependent enhancer function [94]. Thus, highly 
specific CRISPR/Cas9-based epigenome-editing technology 
may serve as an attractive treatment option for epigenetic- 
based cancer therapies in the coming years.
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