
 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development 39

International Journal of Contents, Vol.13, No.4, Dec. 2017

Towards Performance-Enhancing Programming for Android Application

Development

Dong Kwan Kim

Department of Computer Engineering

Mokpo National Maritime University, Mokpo, Jeonnam 58628, Rep. of Korea

ABSTRACT

Due to resource constraints, most of Android application developers need to address potential performance problems during

application development and maintenance. The coding styles and patterns of Android programming could often affect the execution

time and energy efficiency which are utilized by the Android applications. Thus, it is necessary for application developers to apply

performance-enhancing programming practices for mobile application development. This paper introduces performance-enhancing

best practices for Android programming, and further, it evaluates the impact of these practices on the CPU time of the application.

The original version with the performance-worsening code has been refactored to become an efficient version without changing its

functionality. To demonstrate the efficiency of the proposed approach, each coding pattern was evaluated by measuring the CPU

time under the controlled runtime environment. Furthermore, the Android applications were evaluated and compared via the CPU

time of the original version, with that of the refactored version. These experimental results indicate that, by -using the proposed

programming practices, the Android developer can develop performance-efficient mobile applications.

Key words: Android Programming, Performance Efficiency, Programming Practices, Code Refactoring.

1. INTRODUCTION

Android is one of the most popular mobile operating

systems which are primarily designed for smartphones and

tablets. The Android mobile platform is based on the Linux

kernel and supports various Java and C / C ++ libraries to

extend its basic functions. Due to its openness, Android is

growing and spreading over the world. Many software

developers can share fundamental Software Development Kits

(SDKs), additional development tools, and extra APIs via the

Android developer site [1]. Such an open policy is promoting

the spread of Android programming among software

developers. In addition, Google Play [2], an Android app store,

is an online communication space for app developers where

they can distribute and manage their Android applications.

According to [3], as of February 2017, Google Play features

over 2.7 million Android applications including games, movies,

music, and books. Such a steep increase in developing Android

apps indicates that Android application development could be

relatively simplified by using free Android SDKs, tools, and

APIs.

Since Android systems run on mobile devices with the

limited battery lifetime, software developers cannot ignore the

* Corresponding author, Email: dongkwan@gmail.com

Manuscript received Aug. 18, 2017; revised Sep. 26, 2017;

accepted Sep. 27, 2017

characteristics of mobile systems when developing mobile

applications. There are a variety of ways to efficiently use

limited resources of mobile devices. It can be divided into

hardware-based and software-based approach. This paper

attempts to improve the performance of mobile applications via

a software-based approach. In the perspective of the Android

programming, the software-based performance improvement

can be applied into source code level and bytecode level

according to the object of the performance enhancement. This

paper aims at enhancing the performance of the Android

application at the source code level.

The source code of Android applications may include

coding styles or patterns that could result in performance

degradation. Such coding styles or patterns can be referred as

code smells that are any symptom introduced in application

design or implementation phases in the source code of a

program. The code smell is a sort of potential indications to

maliciously impact on program execution time or runtime

resource consumption. Such a code smell can be often removed

by transforming its code structure. We call it code refactoring.

Code refactoring does not change the semantics of an original

program. This paper provides performance-enhancing

programming practices to improve the performance of the

Android application. Such Android programming practices can

effectively remove bad code smells that are related with

Android performance issues. Since the Android platform

supports Native Development Kit (NDK) [4], this paper

focuses on refactoring not only Java code but also C/C++ code.

https://doi.org/10.5392/IJoC.2017.13.4.039

40 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development

International Journal of Contents, Vol.13, No.4, Dec. 2017

The rest of this paper is organized as follows. Section 2

analyzes existing research outcomes by comparing with the

proposed approach. Section 3 describes the proposed approach

to apply Android best practices for performance enhancement.

Section 4 presents the results of the case study to demonstrate

the effectiveness of the proposed methodology. Section 5

describes the strength and weakness of the proposed approach.

Finally, Section 6 remarks the conclusions and future work

directions.

2. BACKGROUND AND RELATED WORK

Even if software looks like operating correctly at present,

it could contain potential problems in terms of non-functional

aspects such as performance, security, and scalability. Problem-

free software systems can also be problematic through software

evolution. Software engineers believe that such potential

problems could be introduced due to poor design and

implementation choices during software development lifecycle.

They call it a code smell that refers to any symptom in a

program. Code smell possibly indicates a deeper problem over

software evolution. Unnecessary code, dead code, and code

duplication are the typical examples of the bad code smell that

can make software systems messier over time.

In particular, some code smells are closely related with the

performance of an application. Such a performance code smell

should be taken care since it can result in performance

degradation. A quality smell catalogue including the

performance code smell for the Android platform was

introduced in [5], [6]. The catalogue includes 30 quality smells

and refactorings to improve the quality of an Android

application. Along with the refactoring techniques, Android

programming practices were presented in [7], [8] for saving

energy consumption. Energy-saving programming skills were

proposed and evaluated their impacts on Android applications

by measuring energy consumption and execution time.

Many software tools were developed to leverage such

programming practices. They can be used to detect and

eliminate bad code smells using software metrics and code

refactoring methods [9]-[12]. Since Android programming is

based on the Java programming language, object-oriented

metrics for Java applications could be applied for Android

applications. The well-known object-oriented metrics contain

Line of Code (LOC), Depth of Inheritance Tree (DIT),

Coupling Between Objects (CBO), Response for a Class (RFC),

Weighted Methods per Class (WMC), Number of Children

(NOC), Cyclomatic Complexity (CC), and Lack of cohesion in

methods (LCOM). These metrics can be used to find bad code

smells of Android applications by applying the thresholds of

the pre-defined metric values.

Refactoring techniques can be used to remove the bad

code smells which are identified by the object-oriented metrics

[13]. Martin Fowler and his colleagues introduced code

refactoring and presented a catalogue of common refactorings

and code transformations in order to address bad code smells

[8]. Representative refactoring techniques include Extract Class,

Move Method, Move Field, Inline Class, and Introduce

Parameter Objects.

In particular, more specific refactoring techniques were

presented for Android applications by considering the mobile

characteristics of the Android platform such as limited memory,

storage capacity, battery lifetime, and processor power.

Code refactoring techniques for eliminating energy bad

smells were proposed in [14]-[16]. They found energy bad code

smells and investigated their impacts on inappropriate energy

consumption in the Android application. They also revealed

energy-efficient refactorings to improve the energy

consumption of the Android application. Since the energy

efficiency is related with the performance of the Android

application, Hecht explored the performance impacts of three

Android performance code smells including Internal

Getter/Setter, Member Ignoring Method, and HashMap Usage

[17].

3. ANDROID PROGRAMMING PRACTICES FOR

PERFORMANCE

This section focuses on presenting programming practices

which enable software developers to build performance-

enhanced Android applications. Typical performance code

smells are listed and code transformation methods are

presented.

Since Android applications can be written in C/C++ as

well as Java by using Android SDK and NDK, this paper

provides refactoring methods for not only Java code but also

C/C++ code. The NDK uses Java Native Interface (JNI) of the

Java platform to connect Java layers with C/C++ layers. JNI is

a programming framework for a low-level software

development environment.

Fig, 1 shows an example of using JNI to call native code

in an Android Activity. stringFromJNI() is declared as a native

method. The keyword native indicates that a Java method is

implemented in native code. When another method calls the

native method, the native implementation will be executed. The

lower part in Fig. 1 shows a native implementation of the

native method, stringFromJNI().

//Declaration of native method in Android Activity

public class MainActivity extends Activity{

 //A native library

 static { System.loadLibrary("native-lib"); }

 //Declaration of a native method

 public native String stringFromJNI();

}

// Implementation of native method in native code

extern "C"

JNIEXPORT jstring JNICALL

Java_example _MainActivity_stringFromJNI(

 JNIEnv *env, jobject) {

 std::string hello = "Hello from Native Code";

 return env->NewStringUTF(hello.c_str());

}

Fig. 1. Using Java Native Method to Call Native Code.

 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development 41

International Journal of Contents, Vol.13, No.4, Dec. 2017

Fig. 2. The Overall Procedure for Building Performance-Enhancing Android Applications.

Fig. 2 illustrates the overall procedure of the proposed

approach to create performance-enhancing Android

applications. The original version of an Android application

will be transformed into the performance-aware version

through the stepwise and systematic process. The Android

application may be written in both Java and C/C++. Android

supports all Java language features and APIs. Developers can

also integrate C/C++ code with Java code for their applications

by using NDK tools and libraries. Such NDK facilities enable

Android applications to be harmonized with third-party C/C++

libraries. Therefore, there are the refactoring activities for Java

code and C/C++ code. The refactoring activity for Java code

proceeds according to the refactoring methods for the Java

programming language. Similarly, C/C++ code is refactored by

following the refactoring rules and guidelines for C/C++. The

refactored versions are tested automatically by a GUI testing

tool in order to evaluate if their original functions are preserved

after code refactoring. Once the refactoring process is

completed, the execution time of the original and refactored

versions is measured to see if the refactored version is more

efficient than the original version. If the refactored version

consumes less CPU time, it is selected. Otherwise, it is

considered to be refactored again. The measurement of the

execution time is performed by separating Java code from

C/C++ code.

Table 1 presents a list of the proposed Android

programming practices which can be applied to improve the

performance of an Android application.

 Enhanced For Loop :

For the better performance, the Android developers’ web

site suggests to use the enhanced for loop syntax (a.k.a. for-

each statement) by default [18]. The enhanced for statement is

introduced in Java 5 and can be used to iterate all elements of

arrays and Iterable objects including collections such as

ArrayList, LinkedList, and HashSet. Compared to a hand-

written counted loop, the enhanced for expression can iterate

all elements in a simple way and construct human-readable

code. Fig. 3 shows the code snippet of replacing the typical for

loop with the for-each loop. The typical for statement refers to

the hand-written counted loop.

Table 1. Definition of Android Programming Practices

Code Styles Descriptions

Enhanced For

Loop

-for loop syntax for optimization

-for-each statements are recommended for

better performance

Internal

Getter/Setter

-Directly access internal fields without

getters/setters

-Internal getters/setters are expensive

Local Variables

-Avoid unnecessary global variables

within a loop expression

-Replace global variables with local

variables if needed

Avoid Creating

Unnecessary

String Objects

-Object management is expensive

-Use StringBuffer instead of creating

unnecessary String objects

Use Static Final

For Constants

The “static” and “final” keywords should

be used to declare constants

Inefficient Data

Structure

Use SparseArray instead of

HashMap<Integer, Object>

Avoid Using

Recursive

Methods

-Recursive methods are expensive

-Use non-recursive methods instead of

recursive methods

Avoid

Transferring High

Volume Data on

Slow Network

-Transferring data on a slow network is

not efficient for the battery life

-Users can send bulk data on WiFi, 3G,

etc.

Avoid Early

Resource Binding

-Energy-consuming resources of an

Android device should be bound as late as

possible

-More energy will be consumed because

of more executed time

42 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development

International Journal of Contents, Vol.13, No.4, Dec. 2017

The Original Version: Typical for statement

for (int i = 0; i < myArray.length; i++) {

 sum += myArray[i].val;

}

The Refactored Version: for-each statement

for (Obj myObj : myArray) {

 sum += myObj.val;

}

Fig. 3. Replacing typical for loops with for-each loops.

 Internal Getter/Setter:

It is recommended to use getters and setters to allow for

accessing private fields outside classes. However, the use of

getters and setters within classes can lead to the performance

degradation since Android virtual methods are expensive. Thus,

one should access directly internal fields without using getters

and setters. Getters and setters need to be called to provide

public APIs.

 Local Variables:

Since its iteration number can vary considerably, the loop

statement such as for and while expressions can impact on the

performance of an Android application. Therefore, one should

pay attention to the loop expressions when producing

performance-critical applications. The loop statement

iteratively performs the same operations within the inner block

of the loop. Therefore, one has to consider replacing global

variables within a loop statement with local variables in order

to achieve the performance enhancement. Unlike the enhanced

for statement, the use of this coding style can be applied into

both Java and C/C++.

 Avoid Creating Unnecessary String Objects:

Object creation involves in memory allocation and

garbage collection. Thus, one should avoid creating

unnecessary objects. In particular, the creation of unnecessary

String objects can result in unnecessary work and performance

degradation. For example, the inappropriate use of the string

constructor (e.g., new String(“Android”)) can produce

unnecessary String objects. Since the String object is

immutable, the operation of string concatenation needs to

create intermediate String objects. It is recommended to use

StringBuffer instead of String when one needs to modify the

String object.

 Use Static Final For Constants:

For the optimization, one needs to explicitly declare

constants with the “static” and “final” keywords. Thus, the

compiler can generate optimized bytecode to enhance the

access time on these constants. It is highly recommended to use

appropriate keywords to declare constants for not only

performance but also readability.

 Inefficient Data Structure:

The use of the collection framework can be beneficial to

manage objects in an easy way. However, the misuse of the

collection framework can cause the performance problems. In

particular, one should carefully use the standard Java HashMap

class when the performance matters. It is recommended to use

the Android SparseArray class instead of HashMap<Integer,

Object>. SparseArray is a good replacement of HashMap when

mapping integers to Objects.

 Avoid Using Recursive Methods:

In Java, a method can call itself, which is known as

recursion. Even if recursion is a beneficial function-call

mechanism for computation in some aspects, the use of the

recursion can cause the performance degradation. Since

recursive methods are expensive, one should use non-recursive

methods for embedded applications including mobile platforms.

The last two code styles shown in Table 1 are related to

the power consumption of an Android device. For the better

energy efficiency, it is beneficial to avoid transferring high

volume bulk data over a slow network connection. In addition,

it is recommended to avoid binding physical resources too early

before they are requested.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed

programming practices, case studies were conducted with the

experimental example codes and third-party Android

applications. These case studies evaluated C/C++ code as well

as Java code because some parts of the programming practices

can be applied into C/C++ code. The example code was used to

assess the coding styles which are mentioned in the preceding

section. And for the realistic assessment, two Android

applications were considered. They include Java-only

applications and NDK-based applications. During these case

studies, the proposed Android programming practices were

applied and then the execution time of the modified code was

measured. By analyzing the elapsed CPU time, the proposed

performance-enhancing programming practices are proved to

be meaningful and effective.

All the measurements were performed on a workstation

computer with an Intel Core i7 (3.5 GHz) processor and 8 GB

RAM, running the 64-bit version of Windows 7. For these

experiments, Android Studio 2.3.3 was used as a development

tool and a Google Nexus 6 emulator was used as an execution

environment with Android 6.0 (Marshmallow).

Table 2 presents the experimental results of measuring the

CPU time of the example code. In Table 2, BR, AR, and PER

stand for Before Refactoring, After Refactoring, and

Performance Efficiency Ratio, respectively. For these

experiments, the Android example code for each code style was

run iteratively more than 10,000 times and the elapsed CUP

time was measured. As the iteration number increases, the

performance gains will do.

 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development 43

International Journal of Contents, Vol.13, No.4, Dec. 2017

Table 2. Results of Measuring CPU Time

Code Styles
CPU Time(ms) BR-AR

(ms)

PER

(%) BR AR

Enhanced For

Loop
1,769 1,070 699 39.51

Internal

Getter/Setter
608 85 523 86.02

Local Variables 2,818 913 1,905 67.60

Avoid Creating

Unnecessary

String Objects

2,705 2,279 426 15.75

Use Static Final

For Constants
5,711 136 5,575 97.62

Inefficient Data

Structure
4,133 1,614 2,519 60.95

Avoid Using

Recursive

Methods

2,827 936 1,891 66.89

The sample code for Internal Getter/Setter contains three

internal fields and their corresponding getter methods and runs

9,000 times iteratively to measure the elapsed CUP time.

To evaluate the “Avoid Creating Unnecessary String

Objects” case, five String variables are declared via the String

constructor. And then, they are concatenated and returned.

Meanwhile, the refactored version uses the StringBuffer

instance instead of the String instance.

To show the impact of recursion on the performance, a

sample code for calculating greatest common divisors was used.

The original version contains a recursive method and the

refactored version uses a loop construct instead.

Along with the experimental example code, Android

applications were selected and evaluated for the more realistic

case study. As the experimental example code includes Java

and C/C++, Java-only applications and NDK-based

applications are selected for this assessment. Table 3

summarizes a list of two Android applications, Snake Game

and Bitmap Plasma for the experiments.

Snake Game is an Android version of the simple and

typical 2D snake game. Game players need to control a snake-

like line by selecting the directional arrow keys (e.g., north,

south, east, and west). When the snake eats an apple during

gaming, it grows longer. Since this Snake Game is written in

Java, the performance-enhancing code styles for Java can be

applied for the better performance.

Bitmap Plasma is one of the Android sample applications

provided by the Android developer website and uses JNI to

render a plasma effect in an Android Bitmap from C code [19].

Therefore, one can refactor the source code of Bitmap Plasma

with NDK-specific programming practices.

Table 3. List of the Android Applications for the Experiments

Apps Descriptions Remarks

Snake

Game

An Android version of the

simple 2D snake game

Android Activity

with GUI

Bitmap

Plasma

-To render a plasma effect

in an Android Bitmap from

C code

-To use JNI

An Application

written in Java and

C/C++

To measure more accurate CPU time, the original and the

refactored versions need to be tested and measured with the

exactly same GUI events. Manual event inputs from users can

decrease the accuracy of the measured CPU time. In fact, it is

almost impossible for users to create the exactly same input

events to the two versions of the tested Android application.

Therefore, it is required to use a testing tool which can support

test automation with minimal manual efforts. In these

experiments, the original and modified versions of the Android

application were tested by an automated GUI testing tool,

Robotium which is an Android test automation framework for

native and hybrid applications [20]. Robotium is based on

JUnit framework and can be integrated with Android Studio.

One can edit GUI-based test inputs such as button clicks, text

inputs, and mouse movements in Android Studio. And then,

such test inputs can be run automatically in the order in which

they were created in the original version of a tested application.

For the refactored version, the same input events are applied

automatically. Therefore, the CPU time of the two versions is

measured under the same GUI input events.

In the Snake Game, a game player needs to maneuver a

snake-like line by clicking the four direction arrow keys. The

original and refactored versions of the Snake Game were tested

with the twenty mouse clicks of the direction arrow keys.

The performance-enhancing programming practices were

applied in the refactored version of the Snake Game. For

example, enhanced for loops are used and internal

getters/setters are removed in the refactored version. Fig. 4

shows an overridden code of the onDraw() method of a View

class which is called to refresh the screen periodically by the

Android system. While the original version of onDraw() uses

internal getters, the refactored version of onDraw() accesses

internal variables without using internal getters.

The Original Version: with Internal Getter

public void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 for (int x = 0; x < this.getmXTileCount(); x += 1) {

 for (int y = 0; y < this.getmYTileCount(); y += 1) {

 if (this.mTileGrid[x][y] > 0) {

 canvas.drawBitmap(

this.mTileArray[mTileGrid[x][y]],

this.getmXOffset() + x * this.getmTileSize(),

 this.getmYOffset() + y * this.getmTileSize(),

mPaint);

 }

 }

 }

}

The Refactored Version: without Internal Getter

public void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 for (int x = 0; x < mXTileCount; x += 1) {

 for (int y = 0; y < mYTileCount; y += 1) {

 if (mTileGrid[x][y] > 0) {

 canvas.drawBitmap(

mTileArray[mTileGrid[x][y]],

44 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development

International Journal of Contents, Vol.13, No.4, Dec. 2017

mXOffset + x * mTileSize,

 mYOffset + y * mTileSize,

mPaint);

 }

}

}

Fig. 4. Original and Refactored Versions of Snake Game

Another example application is Bitmap Plasma which is

based on JNI to call C functions from Java methods. Bitmap

Plasma was selected to evaluate performance-enhancing

programming practices for C/C++ as well as Java. Bitmap

Plasma contains a native method, renderPlasma() which calls a

function fill_plasma() to render plasma on a view. Fig. 5 shows

the original and refactored versions of the Bitmap Plasma

application. In the original version, the for loop uses the global

variables xt1 and xt2. For the better performance, these global

variables were refactored into the local variables in the

refactored version of the Bitmap Plasma. Since the fill_plasma()

function is called many times, the use of the local variable can

enhance the overall performance of the application.

The Original Version: Using Global Variables

Fixed xt1; //Global Variable

Fixed xt2; //Global Variable

static void fill_plasma(…){ …

for (yy = 0; yy < info->height; yy++) {

 uint16_t* line = (uint16_t*)pixels;

 Fixed base = fixed_sin(yt1) + fixed_sin(yt2);

xt1 = xt10;

 xt2 = xt20;

…

}

}

The Refactored Version: Using Local Variables

static void fill_plasma(…){ …

for (yy = 0; yy < info->height; yy++) {

 uint16_t* line = (uint16_t*)pixels;

 Fixed base = fixed_sin(yt1) + fixed_sin(yt2);

Fixed xt1 = xt10; //Local Variable

 Fixed xt2 = xt20; //Local Variable

…

}

}

Fig. 5. Refactoring Global Variables to Local Variables in

Bitmap Plasma.

Snake Game and Bitmap Plasma were tested and

measured to assess the performance efficiency by the Android

programming practices in more realistic apps. Fig. 6 depicts the

exclusive CPU time of the original and refactored versions of

the two Android applications. The Method Tracer in Android

Studio was used to measure the invocation counts, inclusive

times, and exclusive times of the methods of an application.

For the experiments, the exclusive CPU times of the

application methods were monitored without considering the

processes of the Android System. Similar to the numbers

obtained for the experimental example code, the results shown

in Figure 6 indicate that the refactored versions perform

efficiently compared to the original versions of the same

application.

Fig. 6. CPU Time of Original and Refactored Android

Applications-Snake Game and Bitmap Plasma

Table 4 shows more detailed CPU times according to the

application methods. The four methods in the Snake Game

application occupy CPU more than others. According to the

results shown in Table 4, we can find that the inclusive CPU

time of the refactored application method was reduced.

Table 4. CPU Times of Methods in Snake Game

Method

Names

CPU Time

in Org. Ver.(ms)

CPU Time

in Ref. Ver.(ms)

SnakeView

.update
1,151 565

TileView

.clearTiles
1,020 423

TileView

.onDraw
1,066 616

TileView.setTile 282 248

5. DISCUSSION

This paper is intended to provide Android best

programming practices to enhance the performance of Android

applications written in both Java and C/C++. In particular, the

original version of the application is refactored into the

performance-aware programming styles at the source code

level. Even if the proposed practices can allow developers to

create efficient programs, there are some limitations of the

programming practices.

The proposed refactoring methods are not automatic but

manual procedures. They are not supported by software

development tools and code generation. In some aspects,

automation is one of the most important factors to choose

software practices. However, since developers can apply the

 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development 45

International Journal of Contents, Vol.13, No.4, Dec. 2017

proposed programming practices when editing source code,

Android applications can be improved in an efficient way.

The proposed performance-enhancing programming

practices focus on the source code of an Android application.

They are intended to refactor the structure of source code by

adding new methods, removing unnecessary code, or changing

loop expressions. Hence, they are limited to be applied for the

bytecode of an Android application. However, the fundamental

ideas of the programming practices can be adopted for the

bytecode of Android applications.

The execution time of an Android application is mainly

concerned and measured to see whether the application runs

efficiently or not. Since the CPU time consumption can directly

affect the battery lifetime, it is important to reduce the CPU

time consumption. Hence, even if the proposed programming

practices do not explore the energy consumption in depth, the

results of reducing the execution time could lead to the energy

–saving benefits.

To demonstrate the effectiveness of the refactoring rules,

several evaluation experiments were designed and conducted.

The performance results were measured through multiple

executions and were based on arithmetical means to minimize

experimental errors. It is not easy to prove the performance

enhancement of the proposed refactoring methods by using

formal methods including formulas. In some senses, such an

approach might not be relevant for the performance-enhancing

programming practices.

6. CONCLUSIONS AND FUTURE WORK

Most of mobile applications should share limited

resources of a mobile device with other ones during their

operations. The performance efficiency of such an application

is one of the most important software qualities to assess how

well applications can response to users’ inputs and use

resources in an efficient way. Obviously, application

developers need to build performance-enhancing programs that

can reduce power consumption and speed up execution time

under the normal conditions. This paper has focused on

programming styles or coding patterns at a source code level

that can impact on performance and execution time. The paper

has presented a set of programming expressions that may lead

to performance degradation due to its unnecessary and

inefficient code. It has also proposed a refactoring approach to

transform the original expressions into the improved ones. In

addition, case studies have been conducted to demonstrate the

effectiveness of the proposed approach. The experimental

results suggest that the proposed programming practices could

speed up the execution time of Android mobile applications.

As a future work, the programming styles on energy

consumption will be explored in detail to extend Android

programming best practices. In addition, the proposed approach

can be applied into other popular mobile platforms such as the

iOS mobile platform and Windows Mobile. Even though such

mobile platforms are based on different programming

languages, the basic guidelines and rules for performance

enhancement at a source code level can be easily adopted for a

specific mobile platform. Furthermore, it is worth developing a

refactoring tool to support a systematic process of the proposed

approach in the paper. Such a refactoring tool can be composed

of three main parts--Android Code Analyzer, C/C++ Code

Analyzer, Code Smell Detector, and Code Refactor. Code

Analyzers are needed to parse Android and C/C++ code to

create an intermediate representation such as Abstract Syntax

Tree. Code Smell Detector should extract code blocks that will

be refactored. Code Refactor enacts refactoring rules to the

identified bad code smells.

Another promising research direction is to formally prove

the effectiveness of the performance-enhancing programming

practices. We can expect that such a formal proof method can

supplement experimental results from a specific runtime

environment.

REFERENCES

[1] Android Mobile Platforms, The official website,

https://developer.android.com

[2] Google Play, https://play.google.com/

[3] AppBrain, Number of Android applications, Feb. 2017.

[4] Android NDK website,

https://developer.android.com/ndk/index.html

[5] J. Reimann, M. Brylski, and U. Aßmann, A Tool-

Supported Quality Smell Catalogue for Android

Developers, Softwaretechnik-Trends, 2014.

[6] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig,

and C. Jensen, “Understanding code smells in Android

applications,” International Conference on Mobile

Software Engineering and Systems, 2016.

[7] S. Mundody and K. Sudarshan, “Evaluating the Impact of

Android Best Practices on Energy Consumption,”

International Conference on Information and

Communication Technologies, 2014.

[8] D. Li and W. G. J. Halfond, “An investigation into energy-

saving programming practices for Android smartphone

app development,” International Workshop on Green and

Sustainable Software, 2014.

[9] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita,

“Automatic metric thresholds derivation for code smell

detection,” International Workshop on Emerging Trends

in Software Metrics, 2015.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code,

Addison Wesley, 2002.

[11] F. Palomba, D. D. Nucci, A. Panichella, A. Zaidman, and

A. D. Lucia, “Lightweight detection of Android-specific

code smells: The aDoctor project,” International

Conference on Software Analysis, Evolution and

Reengineering (SANER), 2017.

[12] G. Hecht, B. Omar, R. Rouvoy, N. Moha, and L. Duchien,

“Tracking the Software Quality of Android Applications

Along Their Evolution,” International Conference on

Automated Software Engineering, 2015.

[13] J. A. M. Santos, M. G. de Mendonça, and C. V. A. Silva,

“An exploratory study to investigate the impact of

conceptualization in god class detection,” International

46 Dong Kwan Kim : Towards Performance-Enhancing Programming for Android Application Development

International Journal of Contents, Vol.13, No.4, Dec. 2017

Conference on Evaluation and Assessment in Software

Engineering, 2013.

[14] J. Lee, D. Kim, and J. Hong, “Code Refactoring

Techniques Based on Energy Bad Smells for Reducing

Energy Consumption,” KIPS Tr. Software and Data Eng.,

vol. 5, no. 5, Apr. 2016, pp. 209-220.

[15] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter,

“Removing Energy Code Smells with Reengineering

Services,” Lecture Notes in Informatics, 2012.

[16] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R.

Rouvoy, “Investigating the energy impact of Android

smells,” International Conference on Software Analysis,

Evolution and Reengineering (SANER), 2017.

[17] G. Hecht, N. Moha, and R. Rouvoy, “An Empirical Study

of the Performance Impacts of Android Code Smells,”

International Conference on Mobile Software Engineering

and Systems, 2016.

[18] Best Practices for Performance,

https://developer.android.com/training/articles/perf-

tips.html#PackageInner

[19] Bitmap Plasma,

https://github.com/googlesamples/android-

ndk/tree/master/bitmap-plasma

[20] Robotium, https://github.com/RobotiumTech/robotium

Dong Kwan Kim

He received the B.S., M.S in computer

science from Soongsil University, Korea

in 1993, 1998 respectively and also

received Ph.D. in computer science from

Virginia Tech, USA in 2009. He is a

professor in the Department of Computer

Engineering at Mokpo National Maritime

University. His research interests include software modeling,

mobile programming, and run-time systems.

