
Journal of Internet Computing and Services(JICS) 2017. Dec.: 18(6): 47-53 47

Performance of Distributed Database System
built on Multicore Systems

Kangseok Kim1, 2*

ABSTRACT

Recently, huge datasets have been generating rapidly in a variety of fields. Then, there is an urgent need for technologies that

will allow efficient and effective processing of huge datasets. Therefore the problems of partitioning a huge dataset effectively and

alleviating the processing overhead of the partitioned data efficiently have been a critical factor for scalability and performance in

distributed database system. In our work we utilized multicore servers to provide scalable service to our distributed system. The

partitioning of database over multicore servers have emerged from a need for new architectural design of distributed database system

from scalability and performance concerns in today’s data deluge. The system allows uniform access through a web service interface

to concurrently distributed databases over multicore servers, using SQMD (Single Query Multiple Database) mechanism based on

publish/subscribe paradigm. We will present performance results with the distributed database system built on multicore server, which

is time intensive with traditional architectures. We will also discuss future works.

☞ keyword : Distributed Database System, Data Clustering, Web Service, Multicore

1. Introduction

Recently, huge datasets have been generating routinely

and rapidly in a variety of fields (environmental sensors,

Internet data, and so on) [1]. Given this deluge of data, there

is a need of distributed database system for processing huge

datasets efficiently and effectively. Therefore the problems of

partitioning a huge dataset effectively and alleviating the

processing overhead of the partitioned data efficiently have

been a critical factor for scalability and performance in

distributeddatabase system. To achieve scalability and high

performance, we developed a distributed database system

built on multicore servers. The databases are distributed over

distinct multicore servers by fragmenting data using data

clustering method with deterministic annealing to increase a

molecule shape similarity and horizontal partitioning method

to decrease a query processing time. In our work the use of

the multicore can allow users to access datasets and to use

servers simultaneously in anytime and in anywhere. We also

used a Single Query Multiple Database (SQMD) mechanism

[2] which was developed for building a scalable, distributed

1 Dept. of Cyber Security, Ajou University, Suwon, 16499, Korea
2 Dept. of Data Science, Ajou University, Suwon, 16499, Korea
* Corresponding author: kangskim@ajou.ac.kr
[Received 26 May 2017, Reviewed 30 May 2017, Accepted 1
September 2017]

database system using virtualization technology based on

OpenVZ in our previous work. The mechanism transmits a

query that is operated simultaneously on all the databases via

middleware and agents using a publish/subscribe paradigm.

The web service component aggregates the responses of the

individual databases. In this paper we fundamentally focus

onhigh performance interaction between users and huge

datasets with a scalable, distributed database system built on

multicore servers.

The remainder of this paper is organized as follows. We

describe related works in Section 2. The architecture of the

scalable, distributed database system built on multicore

systems is presented in Section 3. Section 4 presents

experimental results to demonstrate the viability of the

distributed database system. Finally this paper is concluded

with future research directions in Section 5.

2. Related works

For data scalability, researchers showed that a database

can be scaled across distributed sites by using such

fragmentation methods as vertical, horizontal, hash, range,

list partitioning, and so on [3, 4, 5, 6]. On the other hand,

we address the partitioning problem of a database over

multicore servers. The partitioning is based on data clustering

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2017.18.6.47

Performance of Distributed Database System built on Multicore Systems

48 2017. 12

for data similarity and horizontal partitioning. We performed

the clustering using deterministic annealing algorithms [7]

developed by SALSA project [8]. Also in our work we

utilized multicore servers to provide scalable service to our

distributed system. The partitioning of database over

multicore servers have emerged from a need for new

architectural design of distributed database system from

scalability and performance concerns in today’s data deluge.

Different middleware systems such as OGSA-DAI [9],

OGSA-DQP [10], and Open-Gate [11] for distributed database

systems have been proposed. The middleware systems

provide a uniform access interface to distributed systems.

However, the middleware systems did not address on taking

advantage of the benefits provided by using multicore

technology. In this paper we present our experience of using

publish/subscribe for integrating query results from distributed

database servers over multicore systems. The main objective

is to provide an efficient distributed database system with the

characteristics of scalability and high performance using data

partitioning and multicore technologies.

This paper proposes a new middleware system architecture

that takes advantage of the benefits provided by using

multicore technology, which is not addressed in the previous

papers.

3. Architecture for distributed

database system built on

multicore systems

Figure 1 shows a broad architecture view for distributed

database system built on multicore systems. The system is

composed of three tiers –web service client, a web service

and message service system, agents and a collection of

databases. The distributed database system is composed of

two or more PostgreSQL [12] databases that reside on one or

more multicore servers.

The middleware interacts with a web service and database

agents which run on multicore machines. The web service

acts as a query service manager and a result aggregation

service manager for heterogeneous web service clients. We

describe them in the following subsections.

3.1 Web service client

A query from clients are disseminated through the message

and service system to database servers through database

agents. Web service clients can simultaneously access the data

in all the databases in a distributed environment.

3.2 Message / Service middleware

We have used a message and service middleware system

[13] which supports publish/subscribe messaging paradigm

as a middleware. The message and service system provides

a mechanism for simultaneously disseminating queries and

retrieving the results of the queries to and from distributed

databases.

(Figure 1) An overall architecture view

3.3 Database agent

The agent accepts query requests from users, transfers the

requests to database server and retrieves the results from the

server. The agent performs concatenations of responses

occurred from database. The agent has communication

interfaces for offloading computational needs. Also the agent

generates multiple threads associated with multiple database.

Performance of Distributed Database System built on Multicore Systems

한국 인터넷 정보학회 (18권6호) 49

3.4 Database server

A number of data partitions split are distributed into

database servers using PostgreSQL. The partitioned data is

assigned to a database. The database is associated with a

thread generated by database agent. Multiple threads based

on the number of cores supported by multicore servers can

be generated to maximize high performance service.

4. Performance analysis

In our experiment, databases are distributed over eight

distinct multicore servers by using two different data

fragmentation methods: deterministic annealing clustering

and horizontal partitioning. First, we show the latency

incurred from an interaction between a client and a

centralized database. Then we show query processing cost in

time among distributed databases. The horizontal partitioning

method was chosen due to easy-to-split and easy-to-use

factors. In our experiments we used an example query

shown in Figure 2. The distance R in the figure means a

cutoff to retrieve those points to the query point from the

select * from (select cid, momsim, 1.0 / (1.0 +
cube_distance (('3.0532197952271,
1.0399824380875, -0.092431426048279,
3.0814106464386, 1.0752420425415,
-0.49167355895042, 5.3552670478821,
5.1984167098999, -0.41230815649033,
4.9449820518494, 4.9576578140259,
-0.093842931091785') ::cube, momsim)) as sim from
pubchem_3d where cube_enlarge (('3.0532197952271,
1.0399824380875, -0.092431426048279,
3.0814106464386, 1.0752420425415,
-0.49167355895042, 5.3552670478821,
5.1984167098999, -0.41230815649033,
4.9449820518494, 4.9576578140259,
-0.093842931091785'), R, 12) @> momsim order by
sim desc) as foo where foo.sim != 1.0;

(Figure 2) An example query

(Table 1) The total number of response data

Distance R # of Hits Size in Bytes

0.3 495 80,837

0.4 6,870 1,121,181

0.5 37,049 6,043,337

0.6 113,123 18,447,438

0.7 247,171 40,302,297

database. Table 1 shows the total number of hits obtained

from varying R using the query. In Section 4.1 we show

overhead time incurred from processing a query in the

distributed database system. Section 4.2 presents the

performance results for query processing in a centralized

database. Section 4.3 presents the performance results from

interactions between a client and distributed databases.

4.1 Overhead timing considerations

The cost in time to access data from databases distributed

over multicore servers has the following overheads.

� Network cost (Tclient2ws) – The time to send a query

and receive a response to and from web service.

� Web service cost (Tws2db) –The time between sending

a query from a web service component to all the

databases and retrieving the responses from all the databases.

� Aggregation cost (Taggregation) – The time spent

for aggregating responses in the web service.

� Query Processing cost (Database agent cost)

(Tagent2db) – The time between submitting a query

from an agent to a database server and retrieving

responses from the database server.

4.2 Query processing cost in a centralized

database

In the experiments we show the round trip latency cost

incurred from processing a query with a centralized database

in performing queries.

Table 2 shows the experimental environments. The experiment

results were measured from executing a web service client running

on Windows platform connected to Ethernet network, and

executing a web service and a message/service middleware

running on Windows platform connected to Ethernet network.

(Table 2) Experimental environments

Components Specification

Web service client
Windows platform with 3.40 GHz and 1
GB RAM connected to Ethernet network

Message/service
middleware

Windows platform with 3.40 GHz and 2
GB RAM connected to Ethernet network

Agents and database
servers

eight 2.33 GHz Linux with 8 core / 8
GB RAM connected to Ethernet network

Performance of Distributed Database System built on Multicore Systems

50 2017. 12

Agents and database servers ran on each of eight cores

connected to Ethernet network as well.

Figure 3 shows the mean completion time taken by

transmitting a query and by receiving a response between a

client and a database server, varying the distance R. As the

distance R increases, the size of responses also increases, as

shown in Table 1. Therefore when the distance R increases,

the query processing cost in the database increases as shown

in Figure 3. Thus, by making the performance degrading

factor (query processing cost) faster, we can reduce the total

cost. The result will be used as a baseline for the

experiments performed in the following section.

(Figure 3) Mean query response time in a centralized

(not fragmented database), varying R

4.3 Query processing cost in distributed

databases over multicore servers

The database is split into eight partitions by deterministic

annealing data clustering method and horizontal partitioning

method. Each of partitions is distributed across eight

multicore servers. Table 3 shows the size of the partitioned

data in number.

We measured the mean overhead cost about three

different test cases with two different fragmentation

(Table 3) The fragmented data size (in number) by

clustering with deterministic annealing

(Note that each of fragmented data size

(in number) by horizontal partitioning

method has about 2,154,000 dataset)

(Table 4) The number of responses occurred with

varying R on segments (segment number

(S), data clustering with deterministic

annealing (D), and horizontal partitioning

(H))

methods: deterministic annealing based data clustering vs.

horizontal partitioning vs. combined partitioning of

deterministic annealing based data clustering and horizontal

partitioning by varying R with the example query. In Table

4 the results are summarized with the mean completion time

of a request in the considerations of overhead timings

between a client and databases.

By comparing the total costs, the speedup is follows:

Speedup (1) = Ttotal(1db) / Ttotal(8db)

= (Tclient2ws(1db)+Tws2db(1db))/(Tclient2ws(8db)+Tws2db(8db))

Speedup (2) = 1 / ((1 – (Tagent2db (1db) / Ttotal (1db))) + ((Tagent2db (1db)

/ Ttotal (1db)) / (Tagent2db (1db) / Tagent2db (8db))))

where (1db) means a centralized database and (8db)

means a distributed database.

Speedup (1) means that the value of speedup is the mean

query response time in a centralized database system over

the mean query response time in a distributed database

system. Speedup (2) means that the speedup gained by

incorporating the enhanced and un-enhanced portions

respectively.

Figure 4 shows the speedup obtained by applying

Speedup (1) to the three test cases respectively. For brevity,

as an example, we explain the overall speedup in case which

the distance is 0.5. In case of horizontal partitioning, the

overall speedup by the equation (1) is 1.62. The speedup by

Performance of Distributed Database System built on Multicore Systems

한국 인터넷 정보학회 (18권6호) 51

(Figure 4) Speedup according to distance R
(Figure 5) Mean query processing time in each

cluster (R=0.5)

(Figure 6) Mean query response time in databases

distributed by data clustering based on

deterministic annealing, varying R

(Figure 7) Mean query response time in databases

distributed by horizontal partitioning,

varying R

the equation (2) is 1.93. The difference comes from some

additional overheads incurred during the query/response

interaction. We measured the duration between first response

message and last response message replied from agents, and

the duration between first response message and last

response message arriving into web service component for

global aggregation of responses. There was a difference

between the durations. It is due to two overheads: network

overhead and global aggregation overhead. The network

overhead happened between web service component and

agents. The global aggregation overhead happened since the

web service component has to wait all the responses until all

database servers send the response messages. From the

results with the example query in the distributed database

system, using horizontal partitioning method is faster than

using deterministic annealing based data clustering since

fragments partitioned by similarities in the data clustering

can be different in the size of data. For example, as the case

of cluster number 5 in the graph of Figure 5, when the

number of responses occurred in performing a query in the

cluster number 5 increase, the time needed to perform the

query in the cluster increases as well. But the responses hit

by a query may be occurred in only several distributed

databases, then the deterministic annealingbased data

clustering will benefit more, with a need of data locality

while resulting in high latency. Therefore, from the

experimental results we identified the problems, data locality

and latency. To reduce the latency with increasing data

locality in the deterministic annealing based data clustering,

we combined the deterministic annealing based data

clustering with the horizontal partitioning.

Figures 6, 7, and 8 show the experimental results with

deterministic annealing based data clustering, horizontal

partitioning, and the combination respectively. Compare the

query processing time in Figure 6 with that in Figure 7, and

with Table 4. The query processing cost becomes a smaller

Performance of Distributed Database System built on Multicore Systems

52 2017. 12

portion of overall cost than the transit cost as shown in

Figure 8. This result shows that the distributed database

system is scalable with the partitioning of database over

multicore servers by deterministic annealing based data

clustering for increasing data locality, and by horizontal

partitioning in each cluster for decreasing query processing

cost. Thus the system improves overall performance as well

as query processing performance.

(Figure 8) Mean query response time in databases

distributed by data clustering based on

deterministic annealing and horizontal

partitioning, varying R

5. Conclusions

We presented a scalable, distributed database system

using SQMD mechanism based on a publish/subscribe

paradigm over multicore servers. Also we described about

dataset partitioning problem over multicore servers for

scalability and performance with our architectural design.

The experimental results show that the distributed database

system built on multicore servers is scalable with the

partitioning of database by deterministic annealing based

data clustering for increasing data locality, and with

multithreads of executions associated with multiple databases

split by horizontal partitioning in each cluster for decreasing

query processing cost.

In future work we will apply our proposed system

architecture to building on distributed database systems

based on heterogeneous data sources.

References

[1] Tony Hey and Anne Trefethen, "The data deluge: an

e-Science perspective in Grid Computing: Making the

Global Infrastructure a Reality" edited by Fran Berman,

Geoffrey Fox and Tony Hey, John Wiley & Sons,

Chicester, England, ISBN 978-0-470-85319-1, 2003.

https://doi.org/10.1002/0470867167.ch36

[2] K. Kim, R. Guha, and M.E. Pierce, "SQMD:

Architecture for Scalable, Distributed Database System

Built on Virtual Private Servers", Fourth IEEE

International Conference on eScience, pp. 658–665,

2008. https://doi.org/10.1109/eScience.2008.35

[3] IBM DB2,

https://www.toadworld.com/platforms/ibmdb2/w/wiki/73

41.table-partitioning-overview

[4] MySQL Forums, 2016. http://forums.mysql.com/

[5] Oracle Partitioning with Oracle Database 12c Release

2, Oracle White Paper, 2017.

http://www.oracle.com/technetwork/database/options/part

itioning/partitioning-wp-12c-1896137.pdf

[6] PostgreSQL Partitioning,

https://www.postgresql.org/docs/current/static/ddl-partiti

oning.html

[7] Qiu, X., Fox, G., Yuan, H., Bae, S., Chrysanthakopoulos,

G., Nielsen, H. F., "Performance of Multicore Systems

on Parallel Data Clustering with Deterministic

Annealing", ICCS 2008: Lecture Notes in Computer

Science Vol. 5101, pp. 407-416, 2008.

https://doi.org/10.1007/978-3-540-69384-0_46

[8] SALSA (Service Aggregated Linked Sequential

Activities), http://salsahpc.indiana.edu/

[9] Xuhong Liu, Yunmei Shi, Yabin Xu, Yingai Tian,

Fuheng Liu, "Heterogeneous Database Integration of

EPR System Based on OGSA-DAI", in High

Performance Computing and Applications LNCS, Vol.

5938, pp. 257-263, 2010.

https://doi.org/10.1007/978-3-642-11842-5_35

[10] Helen X. Xiang, "Integrated Queries over a

Heterogeneously Distributed Scientific Database using

OGSA-DQP", in proceedings of the 6th IEEE Joint

International Information Technology and Artificial

Intelligence Conference (ITAIC), pp. 421-425, Chongqing,

Performance of Distributed Database System built on Multicore Systems

한국 인터넷 정보학회 (18권6호) 53

◐ 저 자 소 개 ◑

Kangseok Kim

Kangseok Kim received Ph.D. in Computer Science from Indiana University at Bloomington, IN, USA. He is

currently an associate professor of Cyber Security department and Data Science department at Ajou

University, Suwon, Korea. His main research interests include ubiquitous computing, cloud computing,

IoT/Smartphone grid, bioinformatics and applied security in big data.

Email: kangskim@ajou.ac.kr

2011. DOI: 10.1109/ITAIC.2011.6030237

[11] Naglaa M. Reda and Fayed F. M. Ghaleb, "Open-Gate:

An Efficient Middleware System for Heterogeneous

Distributed Databases", International Journal of

Computer Applications, Vol. 45, No. 2, pp. 44-49,

2012. https://doi.org/10.5120/6755-9009

[12] PostgreSQL, http://www.postgresql.org/

[13] S. Pallickara, G. Fox and H. Gadgil, "On the Creation

& Discovery of Topics in Distributed Publish/Subscribe

systems", Proceedings of the IEEE/ACM GRID 2005

Workshop, pp. 25-32, 2005.

https://doi.org/10.1109/GRID.2005.1542720

