DOI QR코드

DOI QR Code

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation

설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성

  • Lee, Kwang-Ho (Dept. of Energy and Plant Eng., Catholic Kwandong University) ;
  • Bae, Ju-Hyun (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • An, Sung-Wook (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 이광호 (가톨릭관동대학교 에너지플랜트공학과) ;
  • 배주현 (한국해양대학교 대학원 토목환경공학과) ;
  • 안성욱 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Received : 2017.12.07
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

본 연구는 투과성잠제 배후에서 형성되는 설상사주의 주요외력으로 작용하는 평균유속, 연안류 및 난류운동에너지 등을 포함한 유속장의 특성을 수치적으로 검토하였다. 또한, 연안류에 의한 수송유량으로부터 해안선의 지형변동도 예측하였다. 수치해석에는 오픈소스 CFD 코드인 OLAFOAM에 기초한 3차원수치파동수조에 설상사주의 형성조건 하에 있는 투과성잠제를 설치하여 수치실험을 수행하였다. 수치실험에서는 규칙파의 조건 하에서 잠제의 개구폭 및 설치위치에 따른 잠제 주변에서 유속변동의 특성을 평가하였다. 수치실험 결과로부터 잠제의 개구폭이 넓을수록 강한 연안류가 형성됨과 동시에 수송유량이 증가하고, 개구폭이 좁을수록 연안류가 수렴되는 지점이 제간부에서 제두부로 이동함을 확인하였으며, 이로부터 잠제 배후에 형성되는 설상사주의 형성원인을 파악할 수 있었다. 또한, 잠제 사이의 개구폭 및 잠제와 해안선 사이의 거리에 따라 연안류는 해안선에서 난류운동에너지의 변화와 밀접한 관계를 가지는 것을 알 수 있었다.

Keywords

References

  1. Black, K.P. and Andrews, C.J. (2001). Sandy shoreline response to offshore obstacles Part 1: Salient and tombolo geometry and shape. J. Coastal Research, 82-93.
  2. Dally, W.R. and Pope, J. (1986). Detached breakwaters for shore protection (No. CERC-TR-86-1), Coastal Engineering Research Center Vicksburg MS.
  3. Groenewoud, M.D., van de Graaff, J., Claessen, E.W. and van der Biezen, S.C. (1997). Effect of submerged breakwater on profile development. Proceedings of Coastal Engineering, ASCE, 2428-2441.
  4. Harris, M.M. and Herbich, J.B. (1986). Effects of breakwater spacing on sand entrapment. J. Hydraulic Research, 24(5), 347-357. https://doi.org/10.1080/00221688609499313
  5. Higuera, P., Losada, I.J. and Lara, J.L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003
  6. Jensen, B., Jacobsen, N.G. and Christensen, E.D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. https://doi.org/10.1016/j.coastaleng.2013.11.004
  7. Lee, K.H., Bae, J.H., An, S.W., Kim, D.S. and Bae, K.S. (2016). Numerical analysis on wave characteristics around submerged breakwater in wave and current coexisting field by OLAFOAM. Journal of Korean Society of Coastal and Ocean Engineers, 28(6), 332-349. https://doi.org/10.9765/KSCOE.2016.28.6.332
  8. Lee, K.H., Bae, J.H., An, S.W. and Kim, D.S. (2017). Characteristics of water surface variations around 3-dimensional permeable submerged breakwaters under the conditions of salient formation. Journal of Korean Society of Coastal and Ocean Engineers. (in press)
  9. Loveless, J.H. and MacLoed, B. (1999). The influence of set-up behind detached breakwaters. Proc. 26th International Conference on Coastal Engineering. ASCE, Long Island, USA, pp. 2026-2041.
  10. Mizutani, N., Mostafa, A.M. and Iwata, K. (1998). Nonlinear regular wave, submerged breakwater and seabed dynamic interaction. Coastal Engineering, 33(2), 177-202. https://doi.org/10.1016/S0378-3839(98)00008-8
  11. Nobuoka, H., Irie, I., Kato, H. and Mimura, N. (1997). Regulation of nearshore circulation by submerged breakwater for shore protection. Proceedings of Coastal Engineering, ASCE, 2391-2403.
  12. Pilarczyk, K.W. and Zeidler, R.B. (1996). Offshore breakwaters and shore evolution control.
  13. Ranasinghe, R., Larson, M. and Savioli, J. (2010). Shoreline response to a single shore-parallel submerged breakwater. Coastal Engineering, 57(11), 1006-1017. https://doi.org/10.1016/j.coastaleng.2010.06.002
  14. Ranasinghe, R. and Turner, I.L. (2006). Shoreline response to submerged structures: a review. Coastal Engineering, 53(1), 65-79. https://doi.org/10.1016/j.coastaleng.2005.08.003
  15. Ranasinghe, R., Turner, I.L. and Symonds, G. (2006). Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling study. Coastal Engineering, 53(7), 589-611. https://doi.org/10.1016/j.coastaleng.2005.12.004
  16. Sulis, A., Balzano, A., Cabras, C. and Atzeni, A. (2017). On the applicability of empirical formulas for natural salients to Sardinia (Italy) beaches. Geomorphology, 286, 1-13. https://doi.org/10.1016/j.geomorph.2017.02.025

Cited by

  1. 3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.153
  2. Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.166