DOI QR코드

DOI QR Code

콘크리트 부유구조체 적용을 위한 구조용 경량콘크리트의 최적배합비 선정

Determination of Structural Lightweight Concrete Mix Proportion for Floating Concrete Structures

  • Kim, Min Ook (Coastal Engineering Division, Korea Institute of Ocean Science and Technology) ;
  • Qian, Xudong (Centre for Offshore Research and Engineering, National University of Singapore) ;
  • Lee, Myung Kue (Department of Civil and Environmental Engineering, Jeonju University) ;
  • Park, Woo-Sun (Coastal Engineering Division, Korea Institute of Ocean Science and Technology) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Oh, Nam Sun (Department of Ocean.Plant Construction Engineering, Mokpo National Maritime University)
  • 투고 : 2017.10.15
  • 심사 : 2017.12.11
  • 발행 : 2017.12.31

초록

본 연구에서는 콘크리트 부유체 건설에 사용하기 위한 구조용 경량 콘크리트의 최적 배합비를 도출하기 위해 실험적 연구를 수행하였다. 경량콘크리트에 요구되는 설계압축강도 및 단위중량은 동적안정성 해석 및 기존에 건설된 부유식 구조물의 조사결과를 바탕으로 60 MPa, $1,800kg/m^3$로 각각 설정하였으며 슬럼프를 측정하여 워커빌리티를 조사하였다. 실험을 위해 대표적 인공경량골재인 expanded slate, expanded clay, expanded shale을 사용하여 설계조건을 만족할 때까지 콘크리트를 반복 타설하여 최적 배합비를 도출하였다. 콘크리트의 배합에 대하여 NT Build 492, ASTM C 1202와 같은 염소이온 침투 저항성 실험을 실시하였으며 결과분석을 통해 경량콘크리트의 내구성에 미치는 실리카흄과 고로 슬래그 미분말의 영향을 조사하였다. 실험결과, 실리카흄을 시멘트대비 10%로 치환하고 expanded slate 또는 expanded clay를 사용하여 제작한 경량콘크리트가 모든 조건을 만족하였다. 마지막으로 구조용 경량골재의 선정, 경량콘크리트의 제작 및 시공시에 유의할 점에 대하여 설명하였다.

This study aims to provide information for the design and use of structural lightweight concrete (SLWC) for floating concrete structures in a marine environment. An experimental program was set up and comprehensive experimental campaign were carried out to determine SLWC mix proportions that can satisfy specified concrete strength, density, and slump values all of them were determined from previous research. Comparisons with previous SLWC mix designs that have been utilized for actual floating concrete structures were made. Key aspects needed to be considered regarding to the use of SLWC for floating marine concrete structures were discussed.

키워드

참고문헌

  1. Babu, K.G. and Babu, D.S. (2003). Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem. and Concr. Res., 33(5), 755-762. https://doi.org/10.1016/S0008-8846(02)01055-4
  2. Chi, J.M., Huang, R., Yang, C.C. and Chang, J.J. (2003). Effect of aggregate properties on the strength and stiffness of lightweight concrete. Cem. and Concr. Compos., 25(2), 197-205. https://doi.org/10.1016/S0958-9465(02)00020-3
  3. Chia, K.S. and Zhang, M.H. (2002). Water permeability and chloride penetrability of high-strength lightweight aggregate concrete. Cem. and Concr. Compos., 32(4), 639-645. https://doi.org/10.1016/S0008-8846(01)00738-4
  4. Choo, B.S. and Newman, J.B. (2003). Advanced concrete technology 2: concrete properties, Butterworth-Heinemann.
  5. Costa, A. and Appleton, J. (1999). Chloride penetration into concrete in marine environment-part I: main parameters affecting chloride penetration. Mater. and Struct., 32(5), 354-359. https://doi.org/10.1007/BF02479627
  6. Demirbosa, R. and Gul, R. (2003). The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. and Concr. Res., 33(5), 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3
  7. Federation Internationale de la Precontrainte (1983). FIP manual of lightweight aggregate concrete. Surrey Unversity Press, Glasgow.
  8. Ferreira, R.M. (2009). Service-life design of concrete structures in marine environments: a probabilistic based approach, VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG.
  9. Haque, N. and Al-khaiat H. (1999). Strength and durability of lightweight concrete in hot marine exposure conditions. Mater. and Struct., 32(7), 533-538. https://doi.org/10.1007/BF02481638
  10. Haque, M.N., Al-Khaiat, H. and Kayali, O. (2007). Long-term strength and durability parameters of lightweight concrete in hot regime: importance of initial curing. Build. and Environ., 42(8), 3086-3092. https://doi.org/10.1016/j.buildenv.2006.10.032
  11. Haque, M.N., Al-Khaiat, H. and Kayali, O. (2004). Strength and durability of lightweight concrete. Cem. and Concr. Compos., 26(4), 307-314. https://doi.org/10.1016/S0958-9465(02)00141-5
  12. Jiang, D., Tan, K.H., Ong, K.C.G., Heng, S., Dai, J., Lim, B.K. and Ang, K.K. (2017). Behavior of prestressed concrete self-stabilizing floating fuel storage tanks. Proc. of CIGOS, Ho Chi Minh City, Vietnam. (will be published).
  13. Justnes, H., Kim, M.O., Ng, S. and Qian, X. (2016). Methodology of calculating required chloride diffusion coefficient for intended service life as function of concrete cover in reinforced marine structures. Cem. and Concr. Compos., 73, 316-323. https://doi.org/10.1016/j.cemconcomp.2016.08.006
  14. Kim, Y.J., Choi, Y.W. and Lachimi, M. (2010). Characteristics of self-consolidating concrete using two types of lightweight coarse aggregates. Constr. and Build. Mater., 24(1), 11-16. https://doi.org/10.1016/j.conbuildmat.2009.08.004
  15. Li, J. and Yao, Y. (2001). A study on creep and drying shrinkage of high performance concrete. Cem. and Concr. Res., 31(8), 1203-1206. https://doi.org/10.1016/S0008-8846(01)00539-7
  16. Lo, T.Y., Tang, W.C. and Cui, H.Z. (2007). The effects of aggregate properties on lightweight concrete. Build. and Environ., 42(8), 3025-3029. https://doi.org/10.1016/j.buildenv.2005.06.031
  17. Metha, P.K. (1991). Concrete in marine environment. Elsevier Applied Science, London.
  18. Rossignolo, J.A. and Agnesini, M.V.C. (2002). Mechanical properties of polymer-modified lightweight aggregate concrete. Cem. and Concr. Res., 32(3), 329-334. https://doi.org/10.1016/S0008-8846(01)00678-0
  19. Sandvik, K., Eie, R., Advocaat, J., Godejord, A., Haereid, K., Hoyland, K. and Olsen, T. (2004). Offshore structures - a new challenge. Proc. 14th National Conf. on Struct. Engrg., Acapulco Offshore Structures, Norway.
  20. Strum, R.D., McAskill, N., Burg, R.G. and Morgan, D.R. (1999). Evaluation of lightweight concrete performance in 55 to 80 years-old ships. ACI Spec. Publ., 189, 101-120.
  21. Tanyildizi, H. and Coskun, A. (2008). Performance of lightweight concrete with silica fume after high temperature. Constr. and Build. Mater., 22(10), 2124-2129. https://doi.org/10.1016/j.conbuildmat.2007.07.017
  22. Youm, K.S., Moon, J., Cho, J.Y. and Kim, J.J. (2016). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Constr. and Build. Mater., 114, 517-527. https://doi.org/10.1016/j.conbuildmat.2016.03.165

피인용 문헌

  1. Tensile Bond Characteristics between Underwater Coating Materials and Concrete Substrate vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.298