DOI QR코드

DOI QR Code

Toxicity Assessment of Phenanthrene using the Survival and Population Growth Rate of the Marine Rotifer, Brachionus plicatilis

해산로티퍼(Brachionus plicatilis)의 생존 및 개체군 성장률을 이용한 Phenanthrene의 독성평가

  • Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, NIFS) ;
  • Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, NIFS) ;
  • Jang, Soo-Jung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, NIFS) ;
  • Heo, Seung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, NIFS) ;
  • Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, NIFS)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 최훈 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 장수정 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2017.11.13
  • Accepted : 2017.12.04
  • Published : 2017.12.31

Abstract

The oxicity assesment of Phenanthrene (PHE) has been investigated by using the rate (r) of survival and population growth in rotifer Brachionus plicatilis. The survival rate was determined after 24 h of exposure to PHE. The survival rate of PHE had no effect at a maximum of $300mg\;L^{-1}$. The r was determined after 72 h of exposure to PHE. It was observed that r in the controls (absence PHE) was greater than 0.5, but that it suddenly decreased with an increased concentration of PHE. PHE reduced r in a dose-dependent manner and a significant reduction occurred at a concentration of greater than $37.5mg\;L^{-1}$. The $EC_{50}$ value of r in PHE exposure was $63.7mg\;L^{-1}$. The no-observed-effect-concentration (NOEC) of r in PHE exposure was $18.8mg\;L^{-1}$. The lowest-observed-effect-concentration (LOEC) of r in the PHE exposure was $37.5mg\;L^{-1}$. From the results, the concentration of PHE (greater than $37.5mg\;L^{-1}$) has a toxic effect on the r of B. plicatilis in natural ecosystems. These results(including NOEC, LOEC and $EC_{50}$) might be useful for the Polycyclic aromatic hydrocarbons(PAHs) toxicity assessment in marine ecosystems.

해산로티퍼(Brachionus plicatilis)의 생존율 및 개체군 성장률을 사용하여 Phenanthrene (PHE)에 대한 독성평가를 수행하였다. PHE에 24시간 노출한 생존율은 최고 농도 $300mg\;L^{-1}$에서 영향이 나타나지 않았다. PHE에 72시간 노출한 개체군 성장률은 $37.5mg\;L^{-1}$ 농도에서 급격한 감소가 시작되어 최고 농도 $150.0mg\;L^{-1}$에서 개체군 성장이 나타나지 않아, 농도의존적으로 감소하는 경향을 보였다. PHE에 노출된 개체군 성장률의 $EC_{50}$ 값은 $63.7(48.4{\sim}84.5)mg\;L^{-1}$, PHE에 대한 개체군 성장률의 NOEC는 $18.8mg\;L^{-1}$, LOEC는 $37.5mg\;L^{-1}$로 나타났다. 연구결과 PHE를 평가하는 데 있어 생존율보다 개체군 성장률이 적합하며 해양환경에서 PHE의 LOEC 이상의 농도는 B. plicatilis에게 독성영향을 미칠 수 있는 농도로 판단된다. 또한 NOEC와 $EC_{50}$은 독성을 평가하는 기준점으로 이용할 수 있으며, 차후 PAHs의 통합적인 생물영향을 판단하기 위한 기초자료로 해양생태계 평가에 활용될 수 있을 것이다.

Keywords

References

  1. Alves RN, CF Mariz, DVD Paulo and PSM Carvalho. 2017. Toxicity of effluents from gasoline stations oil-water separators to early life stages of zebrafish Danio rerio. Chemosphere 178:224-230. https://doi.org/10.1016/j.chemosphere.2017.03.023
  2. Chiapusio G, S Pujol, ML Toussaint, PM Badot and P Binet. 2007. Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant Soil 294:103-112. https://doi.org/10.1007/s11104-007-9234-4
  3. DellaGreca M, A Fiorentino, M Isidori and A Zarrelli. 2001. Toxicity evaluation of natural and synthetic phenanthrenes in aquatic systems. Environ. Toxicol. Chem. 8:1824-1830.
  4. Edwards NT. 1983. Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial environment: a review. J. Environ. Qual. 12:427-441.
  5. Gallardo WG, Y Tomita, A Hagiwara, K Soyano and TW Snell. 1997. Effect of dimetgyl sullfoxide (DMSO), sodium hydroxide (NaOH), acetone and ethanol on the population growth, mitic frmale production, and body size of the rotifer Brachionus plicatilis Muller. Bull. Fac. Fish., Nagasaki Univ. 78:15-22.
  6. Heintz RA, SD Rice, AC Wertheimer, RF Bradshaw, FP Thrower, JE Joyce and JW Short. 2000. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 208:205-216. https://doi.org/10.3354/meps208205
  7. Hodson PV. 2017. The toxicity to fish embryos of PAH in crude and refined oils. Arch. Environ. Contam. Toxicol. 73:12-18. https://doi.org/10.1007/s00244-016-0357-6
  8. Hwang UK, HM Ryu, S Heo, SJ Chang, KW Lee and JW Lee. 2016. Effect of Heavy Metals on the Survival and Population Growth Rates of Marine Rotifer, Brachionus plicatilis. Korea J. Environ. Biol. 34:353-360. https://doi.org/10.11626/KJEB.2016.34.4.353
  9. Incardona JP, TK Collier and NL Scholz. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 196:191-205. https://doi.org/10.1016/j.taap.2003.11.026
  10. Incardona JP, HL Day, TK Collier and NL Scholz. 2006. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P450 1A metabolism. Toxicol. Appl. Pharmacol. 217:308-321. https://doi.org/10.1016/j.taap.2006.09.018
  11. Incardona JP, MG Carls, HL Day, CA Sloan, JL Bolton, TK Collier and NL Scholz. 2009. Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 43:201-207. https://doi.org/10.1021/es802270t
  12. Incardona JP, LD Gardner, TL Linbo, TL Brown, AJ Esbaugh, EM Mager, JD Stieglitz, BL French, JS Labenia, CA Laetz, M Tagal, CA Sloan, A Elizur, DD Benetti, M Grosell, BA Block and NL Scholz. 2014. Deepwater horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc. Natl. Acad. Sci. 111:1510-1518. https://doi.org/10.1073/pnas.1320950111
  13. Jassen C, F Rodrigo and G Persoone. 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus, I: conceptual framework and applications. Hydrobiologia 255:21-32.
  14. Janssen CR, G Persoone and TW Snell. 1994. Cyst-based toxicity tests. VIII. Short-chronic toxicity tests with the freshwater rotifer Brachionus calyciflorus. Aqua. Toxicol. 28:243-258. https://doi.org/10.1016/0166-445X(94)90036-1
  15. Johson BT and ER Long. 1998. Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach. Environ. Toxicol. Chem. 17:1099-1106. https://doi.org/10.1002/etc.5620170616
  16. Kim M, MC Kennicutt II and Y Qian. 2008. Source characterization using compound composition and stable carbon isotope ratio of PAHs in sediments from lakes, harbor, and shipping waterway. Sci. Total Environ. 389:367-377. https://doi.org/10.1016/j.scitotenv.2007.08.045
  17. Kim SK, JR Oh, WJ Shim, DH Lee, UH Yim, SH Hong, YB Shin and DS Lee. 2002. Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea. Mar. Pollut. Bull. 45: 268-279. https://doi.org/10.1016/S0025-326X(01)00279-X
  18. Kwon HO and SD Choi. 2014. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Sci. Total Environ. 470:1494-1501.
  19. Lee JW, HM Ryu, S Heo and UK Hwang. 2016. Toxicity Assessment of Heavy Metals (As, Cr and Pb) Using the Rates of Survival and Population Growth in Marine Rotifer, Brachionus plicatilis. Korea J. Environ. Biol. 34:193-200. https://doi.org/10.11626/KJEB.2016.34.3.193
  20. Lin DH. 2005. Assessment on the contamination and risk of PAHs in a metals melting area. Acta Ecol. Sin. 25:261-267.
  21. MaConkey BJ, CL Duxbury, DG Dixon and BM Greenberg. 1997. Toxicity of a pah photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ. Toxicol. Chem. 16:892-899. https://doi.org/10.1002/etc.5620160508
  22. Munoz MJ and JV Tarazona. 1993. Synergistic effect of twoand four-component combinations of the polycyclic aromatic hydrocarbons: phenanthrene, anthracene, naphthalene and acenaphthene on Daphnia magna. Bull. Environ. Contam. Toxicol. 50:363-368.
  23. Roberto RM, TW Snell and TL Shearer. 2013. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A to the Brachionus plicatilis species complex (Rotifera). Environ. Pollut. 173:5-10. https://doi.org/10.1016/j.envpol.2012.09.024
  24. Preston BL, TW Snell, TL Robertson and BJ Dingmann. 2000. Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors. Environ. Toxicol. Chem. 19:2923-2928. https://doi.org/10.1002/etc.5620191212
  25. Sasaki JC, J Arey, DA Eastmond, KK Parks and AJ Grosovsky. 1997. Genotoxicity induced in human lymphoblasts by atmospheric reaction products of naphthalene and phenanthrene. Mutat. Res. 393:23-35. https://doi.org/10.1016/S1383-5718(97)00083-1
  26. Shin KH and KW Kim. 2003. Enhanced bioremediation of phenanthrene using biosurfactant. Econ. Environ. Geol. 36:375-380.
  27. Snell TW and CE King. 1977. Lifespan and fecundity patterns in rotifers: the cost of reproduction. Evolution 31:882-890. https://doi.org/10.1111/j.1558-5646.1977.tb01082.x
  28. Sverdrup LE, J Jensen, PH Krogh and J Stenersen. 2002. Studies on the effect of soil aging on the toxicity of pyrene and phenanthrene to a soil-dwelling springtail. Environ. Toxicol. Chem. 21:489-492. https://doi.org/10.1002/etc.5620210303
  29. Tourinho PS, PL Waalewijn-Kool, I Zantkuijl, K Jurkschat, C Svendsen, AMVM Soares, S Loureiro and CAM van Gestel. 2015. $CeO_2$ nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida. Ecotox. Environ. Safe. 113:201-206. https://doi.org/10.1016/j.ecoenv.2014.12.006
  30. Turcotte D, P Akhtar, M Bowerman, Y Kiparissis, RS Brown and PV Hodson. 2011. Measuring the toxicity of alkylphenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery. Environ. Toxicol. Chem. 30:487-495. https://doi.org/10.1002/etc.404
  31. Wilson SC and KC Jones. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut. 81:229-249. https://doi.org/10.1016/0269-7491(93)90206-4
  32. Wolfe MF, GJB Schwartz, S Singaram, EE Miebrecht, RS Tjeerdema and ML Sowby. 1999. Influence of dispersants on the bioavailability and trophic transfer of phenanthrene to algae and rotifers. Aquat. Toxicol. 48:13-24.
  33. Won EJ, RO Kim, HM Kang, HS Kim, DS Hwang, J Han, YH Lee, UK Hwang, B Zhou, SJ Lee and JS Lee. 2016. Adverse effects, expression of the Bk-CYP3045C1 gene, and activation of the ERK signaling pathway in the water accommodated fraction-exposed Rotifer. Environ. Sci. Technol. 50:6025-6035. https://doi.org/10.1021/acs.est.6b01306
  34. Wu S, X Xu, S Zhao, F Shen and J Chen. 2013. Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): n ecotoxicoproteomics approach. Chemosphere 93:963-971. https://doi.org/10.1016/j.chemosphere.2013.05.062
  35. Xie F, SA Koziar, MA Lampi, DG Dixon, WP Norwood, U Borgmann, XD Huang and BM Greenberg. 2006. Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone, and phenanthrene to Daphnia magna: Evidence for a reactive oxygen mechanism. Environ. Toxicol. Chem. 25:613-622. https://doi.org/10.1897/05-256R.1
  36. Yim UH, SH Hong and WJ Shim. 2007. Distribution and characteristics of PAHs in sediments from the marine environment of Korea. Chemosphere 68:85-92. https://doi.org/10.1016/j.chemosphere.2006.12.032
  37. Yoshinaga T, A Hagiwara and K Tsukamoto. 2000. Effect of periodical starvation on the life history of Brachionus plicatilis O.F. Muller (Rotifera): a possible strategy for population stability. J. Exp. Mar. Biol. Ecol. 253:253-260. https://doi.org/10.1016/S0022-0981(00)00268-9
  38. Yu F and YS Lin. 2005. Pollution characteristics of PAHs in the soils of typical urban industrial production areas and their neighboring residential areas. Ecol. Environ. 14:6-9.
  39. Zhang Y, L Huang, C Wang, D Gao and Z Zuo. 2013. Phenanthrene exposure produces cardiac defects during embryo development of zebrafish (Danio rerio) through activation of MMP-9. Chemosphere 93:1168-1175. https://doi.org/10.1016/j.chemosphere.2013.06.056
  40. Zindler F, B Glomstad, D Altin, J Liu, BM Jenssen and AM Booth. 2016. Phenanthrene Bioavailability and Toxicity to Daphnia magna in the Presence of Carbon Nanotubes with Different Physicochemical Properties. Environ. Sci. Technol. 50:12446-12454. https://doi.org/10.1021/acs.est.6b03228