DOI QR코드

DOI QR Code

스크러버를 이용한 주류공정 내 고농도 이산화탄소 제거효율 평가

Evaluation of CO2 Removal Efficiency in Liquor plant by scrubber

  • 박일건 ((주)평화엔지니어링 연구원) ;
  • 박영식 ((주)평화엔지니어링 연구원)
  • 투고 : 2017.11.16
  • 심사 : 2017.12.10
  • 발행 : 2017.12.30

초록

본 논문에서는 주류공정의 고농도 $CO_2$ 제거를 위한 스크러버의 $CO_2$ 흡수 성능평가를 진행하였다. Lab-scale 실험을 통해서 설계인자인 액가스비($18L/m^3$), 공탑속도(0.14 m/s)를 산정하였다. 설계인자를 기반으로 제작한 $5m^3/min$$CO_2$ 흡수 반응기로 실험한 결과, 풍량이 1, 2, 3, 4, $5m^3/min$ 증가시 $CO_2$ 제거율은 98.47%, 96.46%, 92.95%, 89.71%, 85.49%로 감소하는 경향을 보였다. 또한 스크러버를 사용하기 전 후의 에너지 개선율(5.4%) 평가 및 에너지 절감량(11.5 TOE/year), 온실 가스 감축량(6.5 TC/year)를 산정하였다.

In this paper, $CO_2$ absorption of scrubber was tested for removal of high concentration $CO_2$. Liquid to gas ratio($18L/m^3$) and Superficial velocity(0.14 m/s) was determined through Lab-scale test. As flow rates increase 1, 2, 3, 4 and $5m^3/min$, $CO_2$ removal efficiency decrease 98.47%, 96.46%, 92.95%, 89.71% and 85.49%. Also, the scrubber operation made energy improvement(5.4%), energy saving(11.5 TOE/year) and greenhouse gases reduction(6.5 TC/year).

키워드

참고문헌

  1. E. C. Jeon, J. H. Sa, "Development of $CO_2$ Emission Fator by Fuel and $CO_2$ analysis at Sub-bituminous Fired Power Plant.", J. Env. Hlth. Sci., 36(2), 128-135 (2010).
  2. G. H. Mun, "KCRC ISSUE REPORT: Necessity and prospect of CCS", Korea Carbon Capture & Sequestration R&D Center, vol. 01 (2015).
  3. J. A. Lim, Y. I. Yoon, S. C. Nam, S. K. Jeong, "Post-combustion $CO_2$ capture with potassium L-lysine", J of the Korea Academia-Industrial Cooperation Society, Vol.14, No.9, pp. 4627-4634 (2013). https://doi.org/10.5762/KAIS.2013.14.9.4627
  4. M. Claude, "Prospects for $CO_2$ capture and storage", Energy Technology Analysis, pp. 27-36 (2016).
  5. M. Mike, "$CO_2$ Earth", U.S. National Oceanic & Atmospheric Administration Earth System Research Laboratory (2015).
  6. K. Topfer , "Working Group III: 2. Greenhouse gas emission mitigation scenarios and implications", Intergovernmental Panel on Climate Change (2001).
  7. J. K. Lim, "UNFCCC National Communication", Korea Energy Economics Institute (2003).
  8. S. D. Park., "CCS; Carbon Dioxide Capture. & Storage", Physics & High Technology, 19-23 (2009).
  9. "National Greenhouse Gas Inventory Report of Korea", Greenhouse Gas Inventory & Research Center of Korea (2016).
  10. K. G. Kim, J. R. Shin, H. G. Kim, H. J. Kang, "Study on optimization of liquid carbonation pilot plant (system) using sludge water of ready-mixed concrete", J. of Korean Oil Chemists' Soc., Vol.33, No.2, pp. 239-246 (2016). https://doi.org/10.12925/jkocs.2016.33.2.239
  11. J. H. Wee, J. L. Kim, L. S. Song, B. Y. Song, K. S. Choi, "Reduction of Carbon- Dioxide Emission Applying Carbon Capture and Storage (CCS) Technology to Power Generation and Industry Sectors in Korea", Korean Society of Environmental Engineers, 961-972 (2008).
  12. B. A. Oyenekan, G. T. Rochelle, "Energy Performance of stripper Configurations for $CO_2$ Capture by Aqueous Amines", Ind. Eng. Chem. Res., 45, 2457-2464 (2006). https://doi.org/10.1021/ie050548k
  13. A. Belld, R. O. Idem, "Comprehensive Study of the Kinetics of the Oxidative Degradation of $CO_2$ Loaded and Concentrated Aqueous Monoethanolamine (MEA) with and without Sodium Metavanadate during $CO_2$ Absorption from Flue Gases", Ind. Eng. Chem. Res., 45, 2569-2579 (2006). https://doi.org/10.1021/ie050562x
  14. J. Garbrielsen, H. F. Svendsen, M. L. Michelsen, E. H. Stenby, G. M. Kontgeorgis, "Experimental Validation of a Rate-based Model for $CO_2$ Capture using an AMP Solution", Chem. Eng. Sci., 62, 2397-2413 (2007). https://doi.org/10.1016/j.ces.2007.01.034
  15. J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, "Supported absorption of $CO_2$ by tetrabutyphosphonium amino acid ionic liquids", Chemistry., 12(5), 4021-4026 (2006). https://doi.org/10.1002/chem.200501015
  16. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, "Equilibrium solubility of $CO_2$ in aqueous potassium taurate solutions: Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids", In. Eng. Chem. Res., 42(12) 2832-2840 (2003). https://doi.org/10.1021/ie0206002
  17. P. S. Kumar, J. A. Hogendeeorn, S. J. Timmer, P. H. M. Feron, G. F. Versteeg, "Equilibrium solubility of $CO_2$ in aqueous potassium taurate solutions: Part 2. Experimental VLE data and model", In. Eng. Chem. Res., 42(12) 2841-2852 (2003). https://doi.org/10.1021/ie020601u
  18. S. Lee, H. J. Song, S. Maken, H. C. Song, J. Park, "Physical solubility and diffusivity of $N_2O$ and $CO_2$ in aqueous sodium glycinate solution", J. Chem. Eng. Data., 51(2), 504-509 (2006). https://doi.org/10.1021/je0503913
  19. H. J. Song, S. M. Lee, J. H. Lee, J. W. Park, K. R. Jang, J. G. Shim, J. H. Kim, "Absorption of carbon dioxide into aquous potassium salt of serine", KSEE., 31, 505-514 (2008).
  20. E. S. Fernamdez, E. L. V. Goetheer, "DECAB: process development of a phase change absorption process", Energy Procedia, 4, 868-875 (2011). https://doi.org/10.1016/j.egypro.2011.01.131
  21. S. Shen, Y. Yang, Y. Wang, S. Ren, J. Han, "$CO_2$ absorption into aqueous potassium salts of lysine and proline: Density, viscosity and solubility of $CO_2$", Fluid Phase Equilibria, 399, 40-49 (2015). https://doi.org/10.1016/j.fluid.2015.04.021
  22. J. A. Lim, D. H. Kim, Y. Yoon, S. K. Jeong, K. T. Park, S. C. Nam, "Absorption of $CO_2$ into Aqueous Potassium Salt Solutions of L-Alanine and L-Proline", Energy fuels, 26, 3910-3918 (2012). https://doi.org/10.1021/ef300453e