DOI QR코드

DOI QR Code

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO

졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용

  • 황재영 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과)
  • Received : 2017.11.02
  • Accepted : 2017.11.28
  • Published : 2017.12.30

Abstract

For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

고분자 전해질 연료전지의 연료에 포함된 일산화탄소의 선택적 산화를 위하여, 귀금속 촉매를 대체하기 위한 CuO-$CeO_2$ 복합 산화물 촉매를 졸-겔법과 공침법으로 제조하였다. 졸-겔법으로 촉매 제조 시 Cu/Ce의 비와 가수분해 비를 변화시켰다. 제조한 촉매의 활성은 귀금속 촉매($Pt/{\gamma}-Al_2O_3$)와 비교하였다. Cu/Ce의 비를 변화시키면서 제조한 촉매 중 Cu/Ce의 비가 4:16인 촉매가 가장 높은 CO 전환율(90%)과 선택도(60%)를 나타내었다. 촉매의 제조에서 가수분해 비가 증가할수록 촉매 표면적이 증가하였고, 아울러 촉매 활성 또한 증가하였다. 공침법으로 제조한 촉매와 1wt% $Pt/{\gamma}-Al_2O_3$ 촉매의 가장 높은 CO 전환율은 각각 82% 및 81%인 반면, 졸-겔법으로 제조한 촉매의 경우는 90%가 얻어졌다. 이는 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매나 귀금속 촉매보다 더 높은 촉매활성을 보임을 의미한다. CO-TPD 실험을 통하여, 낮은 온도($140^{\circ}C$)에서 CO를 탈착하는 촉매가 본 반응에서 더 높은 촉매활성을 보임을 알 수 있었다.

Keywords

References

  1. C. D. Dudfield, R. Chen, P. L. Adock, "A compact CO selective reactor for solid polymer fuel cell powered vehicle application", J. Power Sources, Vol.86, pp. 214-222, (2000). https://doi.org/10.1016/S0378-7753(99)00427-9
  2. R. Fiorenza, C. Crisafulli, S. Scire, "$H_2$ purification through preferential oxidation of CO over ceria supported bimetallic Au-based catalysts", International Journal of Hydrogen Energy, Vol.41, No.42 pp. 19390-19398, (2016). https://doi.org/10.1016/j.ijhydene.2016.05.114
  3. S. H. Oh, R. M. Sinkevitch, "Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation", J. Catal., Vol.142, pp. 254-262, (1993). https://doi.org/10.1006/jcat.1993.1205
  4. V. M. Schmidt, P. Brocherhoff, B. Hohlein, R. Menzer, U. Stimming, "Utilization of methanol for polymer electrolyte fuel cells in mobile systems", J. Power Sources, Vol.49, pp. 299-299, (1994). https://doi.org/10.1016/0378-7753(93)01830-B
  5. X. Guo, J. Mao, R. Zhou, "Influence of the copper coverage on the dispersion of copper oxide and the catalytic performance of CuO /$CeO_2$(rod) catalysts in preferential oxidation of CO in excess hydrogen", Journal of Power Sources, Vol.371, pp. 119-128, (2017). https://doi.org/10.1016/j.jpowsour.2017.10.055
  6. H. Guan, J. Lin, L. Li, X. Wang, T. Zhang, "Highly active subnano Rh/Fe(OH)x catalyst for preferential oxidation of CO in $H_2$-rich stream", Applied Catalysis B: Environmental, Vol.184, pp. 299-308, (2016). https://doi.org/10.1016/j.apcatb.2015.11.040
  7. H. A. Gasteiger, N. Markovic, P. N. Ross, E. Cairns, "Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys", J. Phys. Chem., Vol.98, pp. 617-625, (1994). https://doi.org/10.1021/j100053a042
  8. M. J. Kahlich, H. A. Gasteiger, R. J. Bhem, "Kinetics of the selective low-temperature oxidation of CO in $H_2$-rich gas over Au/$\gamma$-$Fe_2O_3$", J. Catal., Vol.182, pp. 430-440, (1999). https://doi.org/10.1006/jcat.1998.2333
  9. R. J. H. Grisel, B. E. Nieuwenhuys, "Selective oxidation of CO, over supported Au catalysts", J. Catal., Vol.199, pp. 48-59, (2001). https://doi.org/10.1006/jcat.2000.3121
  10. M. M. Schubert, M. J. Kahlich, H. A. Gasteiger, R. J. Bhem, "Correlation between CO surface coverage and selectivity/Kinetics for preferential CO oxidation over Pt/$\gamma$-$Al_2O_3$ and Au/$\gamma$-$Fe_2O_3$: an in-situ DRIFT study", J. Power Sources, Vol.84, pp. 175-182, (1999). https://doi.org/10.1016/S0378-7753(99)00314-6
  11. M. J. Kahlich, H. A. Gasteiger, R. J. Bhem, "Kinetics of the selective CO oxidation in $H_2$-rich gas on Pt/$Al_2O_3$", J. Catal., Vol.171, pp. 93-105, (1997). https://doi.org/10.1006/jcat.1997.1781
  12. M. C. Denis, G. Lalande, D. Guay, J. P. Dodelet, R. Schulz. "High energy ball-milled Pt and Pt-Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO", J. Appl. Electrochem., Vol.29, pp. 951-960, (1999). https://doi.org/10.1023/A:1003505123872
  13. G. Bond, D. Thompson, Catalysis Reviews: Science and engineering, p.319-320, Academic Search Premier, (1999).
  14. A. Martino, A. Sault, J. S. Kawola, E. Boespflug, M. L. F. Phillips, "A sintering study of novel sol-gel based nano cluster catalysts", J. Catal., Vol.187, pp. 30-38, (1999). https://doi.org/10.1006/jcat.1999.2614
  15. M. Breysse, M. Guenin, B. Claudel, J. Veron, "Catalysis of carbon monoxide oxidation by cerium oxide", J. Catal., Vol.28, pp. 54-62, (1973). https://doi.org/10.1016/0021-9517(73)90178-4
  16. T. X. T. Sayle, S. C. Parker, C. R. A. Catlow, "The role of oxygen vacancies on ceria surface in the oxidation of carbon monoxide", Surf. Sci., Vol.316, pp. 329-336, (1994). https://doi.org/10.1016/0039-6028(94)91225-4
  17. L. Shi, G. Zhang, "Improved Low-Temperature Activity of CuO- $CeO_2$- $ZrO_2$ Catalysts for Preferential Oxidation of CO in $H_2$- Rich Streams", Catalysis Letters, Vol.146, pp. 1449-1456, (2016). https://doi.org/10.1007/s10562-016-1774-x
  18. W. Liu, M. Flytzanistephanopoulos, "Total oxidation of carbon monoxide and methane over transition metal oxide composite catalysts: 1. Catalyst composition and activity", J. Catal., Vol.153, pp. 304-316, (1995). https://doi.org/10.1006/jcat.1995.1132
  19. W. Liu, M. Flytzanistephanopoulos, "Total oxidation of carbon monoxide and methane over transition metal oxide composite catalysts: 2. Catalyst characterization and reaction-kinetics", J. Catal., Vol.153, pp. 317-332, (1995). https://doi.org/10.1006/jcat.1995.1133
  20. G. Avgouropoulos, T. Loannides, H. K. Matralis, J. Batista, S. Hocevar, "CuO-$CeO_2$ mixed oxde catalysts for the selective oxidation of carbon monoxide in excess hydrogen", Catal. Lett. Vol.73, pp. 33-40, (2001).
  21. M. Haruta, "Gold as a low-temperature oxidation catalyst: factors controlling activity and selectivity", Studies in Surface Science and Catalysis, Vol.110, pp. 123-134 (1997).