DOI QR코드

DOI QR Code

Determination of fatty acid methyl esters (FAME) content in aviation turbine fuel using multi-dimensional GC-MS

Multi-dimensional GC-MS를 이용한 항공터빈유의 FAME 함량 분석

  • Youn, Ju Min (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Doh, Jin Woo (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Hwang, In Ha (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Seong Lyong (Propulsion Test and Evaluation Team, Korea Aerospace Research Institute) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University)
  • 연주민 (한국석유관리원 석유기술연구소) ;
  • 도진우 (한국석유관리원 석유기술연구소) ;
  • 황인하 (한국석유관리원 석유기술연구소) ;
  • 김성룡 (한국항공우주연구원 추진시험평가팀) ;
  • 강용 (충남대학교 응용화학공학과)
  • Received : 2017.09.15
  • Accepted : 2017.10.03
  • Published : 2017.12.30

Abstract

The current allowable cross-contamination level of fatty acid methyl esters (FAME) in aviation turbine fuel (AVTUR) is 50 mg/kg, due to that the presence of FAME in AVTUR can significantly impact the fuel supply system and jet engine. It has been difficult to analyze the level of FAME in AVTUR, since it is consisted of a lot of hydrocarbons. In this study, thus, a new method using multi-dimensional GC-MS (MDGC-MS) was proposed in order to determine the FAME level in AVTUR effectively. Applying to MDGC-MS with Deans switching system enabled us to detect and quantify the FAME with low carbon numbers such as those derived from coconut oil and palm kernel oil. The matrix effect of MDGC-MS method, which could shift the FAME peaks to slightly longer retention times, was reduced by 20 times compared with that of 1-dimensional GC-MS reference method. This developed method could be suitable for qualitative and quantitative analyses to determine the contamination level of trace FAME in AVTUR.

항공유에 fatty acid methyl esters (FAME)가 혼합될 경우 연료 공급시스템과 항공기 엔진에 치명적인 고장의 원인이 될 수 있기 때문에 항공유 품질규격에서 FAME 함량을 50 mg/kg 이하로 규정하고 있다. 무수히 많은 탄화수소로 구성된 항공유 중의 FAME 성분을 선택적으로 분석하기 어렵기 때문에 본 연구에서는 MDGC-MS를 사용한 새로운 시험방법을 개발하였다. Deans switching 시스템이 설치된 MDGC-MS를 이용하면 코코넛 오일이나 팜유 유래의 저분자량 FAME 성분도 분석이 가능함을 확인하였다. 개발된 시험방법은 FAME 피크의 머무름 시간을 약간 뒤로 이동시키는 매질 효과(matrix effect)를 현행의 기준 시험방법(IP 585)보다 약 20배 이하로 감소시킬 수 있었다. MDGC-MS는 항공유에 미량의 FAME가 오염되었는지 여부를 정성 및 정량적으로 확인할 수 있는 시험방법으로 적합하였다.

Keywords

References

  1. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, M. Natarajan, "Review of Biodiesel Composition, Properties, and Specifications", Renewable and Sustainable Energy Reviews, Vol.16, pp. 143-169, (2012). https://doi.org/10.1016/j.rser.2011.07.143
  2. Y. K. Lim, S. C. Shin, E. S. Yim, H. O. Song, "The Effective Product Method of Biodiesel", J. Korean Ind. Eng. Chem., Vol.19, No.2, pp. 137-144, (2008).
  3. Joint Inspection Group (JIG), "Preventing FAME Contamination in Jet Fuel at Airports", JIG, London, UK, Bulletin No. 26, June (2009).
  4. K. Lissitsyna, S. Huertas, R. Morales, L. C. Quintero, L. M. Polo, "Determination of Trace Levels of Fatty Acid Methyl Esters in Aviation Fuel by GCxGC-FID and Comparison with the Reference GC-MS Method", Chromatographia, Vol.75, pp. 1319-1325, (2012). https://doi.org/10.1007/s10337-012-2320-7
  5. ASTM D1665, "Standard Specification for Aviation Turbine Fuels", ASTM International, PA (2015).
  6. Defence Standard 91-91 Issue 7 - Turbine Fuel, Kerosine Type, Jet A-1 (NATO Code: F-35 / Joint Service Designation: AVTUR), Ministry of Defence, UK (2015).
  7. IP 583, "Determination of the fatty acid methyl esters content of aviation turbine fuel using flow analysis by Fourier transform infrared spectroscopy - Rapid screening method", The Energy Institute, London, UK (2010).
  8. IP 585, "Determination of fatty acid methyl esters (FAME), derived from bio-diesel fuel, in aviation turbine fuel - GC-MS with selective ion monitoring/scan detection method", The Energy Institute, London, UK (2010).
  9. IP 590, "Determination of fatty acid methyl esters (FAME) in aviation turbine fuel - HPLC evaporative light scattering detector method", The Energy Institute, London, UK (2010).
  10. IP 599, "Determination of fatty acid methyl esters (FAME) in aviation turbine fuel - Gas Chromatography using heart-cut and refocusing", The Energy Institute, London, UK (2014).
  11. Introduction of MDGCsolution, Shimadzu Application News, No. G255, Shimadzu, Japan.
  12. MDGC/GCMS-2010 Series, Shimadzu Multi-Dimensional GC/GCMS System, Shimadzu, Japan.
  13. R. L. Webster, D. J. Evans, P. J. Marriott, "Detailed Chemical Analysis Using Multidimensional Gas Chromatography-Mass Spectrometry and Bulk Properties of Low-Temperature Oxidized Jet Fuels", Energy and Fuels, Vol.29, pp. 2059-2066, (2015). https://doi.org/10.1021/acs.energyfuels.5b00264
  14. X. Hui, K. Kumar, C. Sung, T. Edwards, D. Gardner, "Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels", Fuels, Vol.98, pp. 176-182, (2012). https://doi.org/10.1016/j.fuel.2012.03.040
  15. J. D. McCurry, "GC/MS Analysis of Trace Fatty Acid Methyl Ethers (FAME) in Jet Fuel Using Energy Institute Method IP 585", Agilent Technologies, Publication Part Number: 5990-9432EN, www.agilent.com/chem (2011).