DOI QR코드

DOI QR Code

택사와 alisol B acetate의 병용 투여가 천식 동물 모델에 미치는 영향

Anti-asthmatic Effect of Alismatis Rhizoma and Alisol Acetate B Combination Therapy in a Murine Asthma Model

  • 박미준 (부산대학교 한의학전문대학원) ;
  • 허준이 (부산대학교 한의학전문대학원) ;
  • 권민정 (부산대학교 한의학전문대학원) ;
  • 한창우 (부산대학교 한의학전문대학원)
  • Park, Mi-jun (School of Korean Medicine, Pusan National University) ;
  • Heo, June-yi (School of Korean Medicine, Pusan National University) ;
  • Kwun, Min-jung (School of Korean Medicine, Pusan National University) ;
  • Han, Chang-woo (School of Korean Medicine, Pusan National University)
  • 투고 : 2017.09.15
  • 심사 : 2017.12.28
  • 발행 : 2017.12.30

초록

Objectives: The aim of the study was to evaluate the anti-asthmatic effect of alismatis rhizoma and alisol acetate B combination therapy in a murine asthma model. Methods: C57BL/6 mice were sensitized to and challenged with a mixture of ragweed, dust mite, and aspergillus to induce an asthma animal model. Alismatis rhizoma extract and alisol acetate B combination therapy was co-administered only in the experimental group. To evaluate the anti-asthmatic effect of the combination therapy, inflammatory cell counts in bronchoalveolar lavage (BAL) fluid were determined, and tissue was examined histologically with hematoxylin and eosin (H & E) and periodic acid-Schiff (PAS) stains, by enzyme-linked immunosorbent assay (ELISA) of IgE, IL-4, and IL-5, and with reverse transcription polymerase chain reaction (RT-PCR) of IL-5, IL-33, MUC5AC. Results: Alismatis rhizoma and alisol acetate B combination therapy reduced the number of inflammatory cells, alleviated histologic features, and down-regulated all the investigated asthma mediators, IgE, IL-4, IL-5, IL-33, and MUC5AC. Conclusions: According to the above results, alismatis rhizoma and alisol acetate B combination therapy may have therapeutic potential for asthma.

키워드

참고문헌

  1. Available from: http://cdc.go.kr/CDC/contents/CdcKrContentView.jsp?menuIds=HOME001-MNU1132-MNU1147-MNU0746-MNU2424&cid=69117
  2. James AL, Bai TR, Mauad T, Abramson MJ, Dolhnikoff M, McKay KO, et al. Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur Respir J 2009; 34(5):1040-5. https://doi.org/10.1183/09031936.00181608
  3. Anandan C, Nurmatov U, van Schayck OC, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 2010;65(2):152-67. https://doi.org/10.1111/j.1398-9995.2009.02244.x
  4. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053):1545-602. https://doi.org/10.1016/S0140-6736(16)31678-6
  5. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388(10053):1459-544. https://doi.org/10.1016/S0140-6736(16)31012-1
  6. Korea Health Statistics 2015: Korea National Health and Nutrition Examination Survey (KNHANES VI-3). Available from: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?classType=7
  7. McCracken JL, Veeranki SP, Ameredes BT, Calhoun WJ. Diagnosis and management of asthma in adults: a review. JAMA 2017;318(3):279-90. https://doi.org/10.1001/jama.2017.8372
  8. Donnelly LE, Rogers DF. Novel targets and drugs in inflammatory lung disease. Curr Opin Pharmacol 2008;8(3):219-21. https://doi.org/10.1016/j.coph.2008.04.007
  9. Available from: https://en.wikipedia.org/wiki/Corticosteroid#Adverse_effects
  10. Thomson NC. New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opin Pharmacother 2017;18(3):283-93. https://doi.org/10.1080/14656566.2017.1284794
  11. Wu JN. An illustrated Chinese materia medica. New York: Oxford University Press; 2005, p. 706.
  12. Jin HG, Jin Q, Ryun Kim A, Choi H, Lee JH, Kim YS, et al. A new triterpenoid from Alisma orientale and their antibacterial effect. Arch Pharm Res 2012;35(11):1919-26. https://doi.org/10.1007/s12272-012-1108-5
  13. Han CW, Kang ES, Ham SA, Woo HJ, Lee JH, Seo HG. Antioxidative effects of Alisma orientale extract in palmitate-induced cellular injury. Pharm Biol 2012;50(10):1281-8. https://doi.org/10.3109/13880209.2012.673629
  14. Dai Y, Hang B, Huang Z, Li P. Anti-inflammatory activities and effect of rhizoma Alismatis on immune system. Zhongguo Zhong Yao Za Zhi 1991;16(10):622-5
  15. Kubo M, Matsuda H, Tomohiro N, Yoshikawa M. Studies on Alismatis rhizoma. I. Anti-allergic effects of methanol extract and six terpene components from Alismatis rhizoma (dried rhizome of Alisma orientale). Biol Pharm Bull 1997; 20(5):511-6. https://doi.org/10.1248/bpb.20.511
  16. Kim KH, Kwun MJ, Choi JY, Ahn KS, Oh SR, Lee YG, et al. Therapeutic Effect of the Tuber of Alisma orientale on Lipopolysaccharide-Induced Acute Lung Injury. Evid Based Complement Alternat Med 2013;2013:863892.
  17. Park JC, Hur JM, Kim SE. Isolation and quantitative analysis of alisol B 23-acetate from the rhizome of Alisma orientale. J Korean Soc Food Sci Nutr 2005;34(2):243-6. https://doi.org/10.3746/jkfn.2005.34.2.243
  18. Lee JH, Kwon OS, Jin HG, Woo ER, Kim YS, Kim HP. The rhizomes of Alisma orientale and alisol derivatives inhibit allergic response and experimental atopic dermatitis. Biol Pharm Bull 2012;35(9):1581-7. https://doi.org/10.1248/bpb.b110689
  19. Kanno Y, Yatsu T, Yamashita N, Zhao S, Li W, Imai M, et al. Alisol B 23-acetate from the rhizomes of Alisma orientale is a natural agonist of the human pregnane X receptor. Phytomedicine 2017;26:22-7. https://doi.org/10.1016/j.phymed.2017.01.003
  20. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet 2006;368(9537):804-13. https://doi.org/10.1016/S0140-6736(06)69290-8
  21. Hesselmar B, Enelund AC, Eriksson B, Padyukov L, Hanson LA, Aberg N. The heterogeneity of asthma phenotypes in children and young adults. J Allergy (Cairo) 2012;2012:163089.
  22. Simpson JL, Scott RJ, Boyle MJ, Gibson PG. Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am J Respir Crit Care Med 2005;172(5):559-65. https://doi.org/10.1164/rccm.200503-369OC
  23. Sagar S, Akbarshahi H, Uller L. Translational value of animal models of asthma: Challenges and promises. Eur J Pharmacol 2015;759:272-7. https://doi.org/10.1016/j.ejphar.2015.03.037
  24. Kianmeher M, Ghorani V, Boskabady MH. Animal model of asthma, various methods and measured parameters: a methodological review. Iran J Allergy Asthma Immunol 2016;15(6):445-65.
  25. Zosky G, Sly P. Animal models of asthma. Clin Exp Allergy 2007;37(7):973-88. https://doi.org/10.1111/j.1365-2222.2007.02740.x
  26. Fuchs B, Braun A. Improved mouse models of allergy and allergic asthma-chances beyond ovalbumin. Curr Drug Targets 2008;9(6):495-502. https://doi.org/10.2174/138945008784533589
  27. Goplen N, Karim MZ, Liang Q, Gorska MM, Rozario S, Guo L, et al. Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol 2009;123(4):925-32. https://doi.org/10.1016/j.jaci.2009.02.009
  28. Van Hove CL, Maes T, Joos GF, Tournoy KG. Prolonged inhaled allergen exposure can induce persistent tolerance. Am J Respir Cell Mol Biol 2007;36(5):573-84. https://doi.org/10.1165/rcmb.2006-0385OC
  29. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, et al. Bone marrow stromal cells use TGF-beta to suppre ssallergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 2010;107(12):5652-7. https://doi.org/10.1073/pnas.0910720107
  30. Wan YY. GATA3: a master of many trades in immune regulation. Trends Immunol 2014;35(6):233-42. https://doi.org/10.1016/j.it.2014.04.002
  31. Novak N, Kraft S, Bieber T. IgE receptors. Curr Opin Immunol 2001;13(6):721-6. https://doi.org/10.1016/S0952-7915(01)00285-0
  32. Webb DC, Cai Y, Matthaei KI, Foster PS. Comparative roles of IL-4, IL-13, and IL-4Ralpha in dendritic cell maturation and CD4+ Th2 cell function. J Immunol 2007;178(1):219-27. https://doi.org/10.4049/jimmunol.178.1.219
  33. Leckie MJ. Anti-interleukin-5 monoclonal antibodies:preclinical and clinical evidence in asthma models. Am J Respir Med 2003;2(3):245-59. https://doi.org/10.1007/BF03256653
  34. Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev 2017;278(1):173-84. https://doi.org/10.1111/imr.12552
  35. Evans CM, Raclawska DS, Ttofali F, Liptzin DR, Fletcher AA, Harper DN, et al. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat Commun 2015;6:6281. https://doi.org/10.1038/ncomms7281