DOI QR코드

DOI QR Code

Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete

하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량

  • Lee, Hyun-Jin (Department of Civil Engineering, Andong National University) ;
  • Bae, Su-Ho (Department of Civil Engineering, Andong National University) ;
  • Jung, Sang-Hwa (Advanced Construction Materials Testing Center, Korea Conformity Laboratories)
  • 이현진 (안동대학교 토목공학과) ;
  • 배수호 (안동대학교 토목공학과) ;
  • 정상화 (한국건설생활환경시험연구원 첨단건설재료센터)
  • Received : 2017.09.01
  • Accepted : 2017.11.22
  • Published : 2017.12.30

Abstract

Recently, due to the increasing of interest about the eco-friendly concrete, it is being increased to use concretes containing by-products of industry such as fly ash, ground granulated blast furnace slag, silica fume, and etc. Especially, these are well known for improving the resistance to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance to corrosion of reinforcement and critical chloride content of high volume fly ash concrete(HVFAC) which is replaced with fly ash for approximately 50% cement content. For this purpose, corrosion monitoring of reinforcement by half cell potential method was carried out for the cylindrical test specimens that the upper of reinforcement in concrete was exposed to detect the time of corrosion initiation for reinforcement. It was observed from the test result that the the time of corrosion initiation for reinforcement of HVFAC by the accelerated corrosion tests increased 1.2~1.3 times than plain concrete and the critical chloride contents of plain concrete and HVFAC were found to range $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$, respectively.

최근, 친환경 콘크리트에 대한 관심의 증가로, 플라이애시, 고로슬래그 미분말 및 실리카 퓸 등의 산업부산물을 혼입한 콘크리트의 사용이 증가되고 있다. 특히 이 같은 산업부산물은 콘크리트 내의 철근부식 저항성을 증가시키고 염화물이온 침투를 감소시키는 것으로 잘 알려져 있다. 이 실험연구의 목적은 시멘트량의 약 50%를 플라이애시로 치환한 하이볼륨 플라이애시 콘크리트(HVFAC)의 철근부식 저항성 및 임계 염화물량을 평가하는 것이다. 이를 위하여 철근 상부를 노출시킨 원주형 공시체의 철근부식 개시 시기를 추정하기 위하여 자연전위 측정에 의한 철근부식 모니터링을 수행하였다. 결론적으로, HVFAC의 철근부식 개시 시기는 플레인 콘크리트보다 1.2~1.3배 증가하여 철근부식 저항성이 우수한 것으로 나타났고, 플레인 콘크리트 및 HVFAC의 임계 염화물량은 각각 $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$으로 나타나, HVFAC가 플레인 콘크리트보다 1.1~1.3배 증가하는 것으로 나타났다.

Keywords

References

  1. ASTM C 876-91. (1999). Standard Test Method for Half-cellPotentials of Uncoated Reinforcing Steel in Concrete, AmericanSociety for Testing and Meterials.
  2. ASTM C 1152. (1990). Standard Test Method for Acid-SolubleChloride in Mortar and Concrete, American Society for Testingand Meterials
  3. ASTM D 1141. (2000). Specification for Substitute Ocean Water,American Society for Testing and Meterials.
  4. Bae, S.H., Chun, Y.S., Ha, J.D. (2003). Performance evaluation ofconcrete using corrosion inhibitors, Journal of the KoreanSociety of Civil Engineer, 23(5), 815-822 [in Korean].
  5. Bae, S.H., Lee, K.M., Kim, J.S., Kim, Y.S. (2007). Estimation of critical chloride content for corrosion of reinforcing steel in concrete by accelerated corrosion tests, Journal of the Korean Society of Civil Engineer, 27(5), 771-776 [in Korean].
  6. Choi Y.W., Park M.S., Choi B.K., Oh S.R. (2014). The properties of strength development of high volume fly ash concrete with reduction of unit water content, Journal of Korean Recycled Construction Resources Institute, 2(1), 46-51 [in Korean]. https://doi.org/10.14190/JRCR.2014.2.1.046
  7. JCI-SC3. (1991). The Accelerated Corrosion Test of Reinforcing Steel in Concrete Containing Chloride, The Repeated Cycles of Wetting and Drying, Japan Concrete institute [in Japanese].
  8. Jung, Y.B., Yang, K.H. (2015). Design approach of concrete structures considering the targeted CO2 reduction, Journal of the Korean Recycled Construction Resource Institute, 3(2), 115-121 [in Korean]. https://doi.org/10.14190/JRCR.2015.3.2.115
  9. Kim, S.H., Koh, K.T., Lee, J.H., Ryu, G.S. (2014). Study on mechanical properties of geopolymer concrete using industrial By-products, Journal of the Korean Recycled Construction Resource Institute, 2(1), 52-59 [in Korean] https://doi.org/10.14190/JRCR.2014.2.1.052
  10. Kim, T.H., Tae, S.H., Roh, S.J., Kim, R.H. (2014). "Development of environmental index in concrete," Proceedings of the Korea Concrete institute, 26(2), 651-652 [in Korean]. https://doi.org/10.4334/JKCI.2014.26.5.651
  11. KS F 2403. (2014). Standard Test Method for Making and Curing Concrete Specimens, KS Standard, Korea [in Korean].
  12. KS F 2405. (2010). Standard Test Method for Compressive Strength of Concrete, KS Standard, Korea [in Korean].
  13. Kwon, S.O., Bae, S.H., Lee, H.J., Jung, S.H. (2014). Characteristics for reinforcement corrosion and chloride ion diffusion of high volume fly ash concrete, Journal of the Korean Recycled Construction Resources Institute, 2(1), 34-39 [in Korean]. https://doi.org/10.14190/JRCR.2014.2.1.034
  14. Malhotra, V.M. (1994). CANMET Investigations Dealing with High-Volume Fly Ash Concrete, Advances in Concrete Technology, MSL 94-1(IR), 445-482.
  15. Park, J.K., Hong, K.N., Han, S.H., Chai, Y., Kim, J.H. (2015). Durability of alkali activated blast furnace slag concrete, Proceedings of the Korea Concrete institute, 27(1), 391-392 [in Korean].