DOI QR코드

DOI QR Code

Tomography Reconstruction of Ionospheric Electron Density with Empirical Orthonormal Functions Using Korea GNSS Network

  • Hong, Junseok (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kim, Yong Ha (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Chung, Jong-Kyun (Korea Astronomy and Space Science Institute) ;
  • Ssessanga, Nicholas (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kwak, Young-Sil (Korea Astronomy and Space Science Institute)
  • 투고 : 2016.12.26
  • 심사 : 2017.02.28
  • 발행 : 2017.03.15

초록

In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.

키워드

참고문헌

  1. Andrews HC, Patterson CL, Singular value decompositions and digital image processing, IEEE Trans. Acoust. Speech Signal Process. 24, 26-53 (1976). https://dx.doi.org/10.1109/TASSP.1976.1162766
  2. Arikan O, Arikan F, Erol CB, Computerized ionospheric tomography with the IRI model, Adv. Space Res. 39, 859-866 (2007). https://dx.doi.org/10.1016/j.asr.2007.02.078
  3. Austen JR, Franke SJ, Liu CH, Ionospheric imaging using computerized tomography, Radio Sci. 23, 299-307 (1988). https://dx.doi.org/10.1029/RS023i003p00299
  4. Bilitza D, International reference ionosphere 2000, Radio Sci. 36, 261-275 (2001). https://dx.doi.org/10.1029/2000RS002432
  5. Bilitza D, Reinisch B, International reference ionosphere 2007: improvements and new parameters, Adv. Space Res. 42, 599-609 (2008). https://dx.doi.org/10.1016/j.asr.2007.07.048
  6. Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, et al., The international reference ionosphere 2012 - a model of international collaboration, J. Space Weather Space Clim. 4, A07 (2014). https://dx.doi.org/10.1051/swsc/2014004
  7. Bilitza D, Altadill D, Reinisch B, Galkin I, Shubin VN, et al., The international reference ionosphere: model update 2016, in EGU General Assembly 2016, Vienna, Austria, 17-22 Apr 2016.
  8. Bjornsson H, Venegas SA, A manual for EOF and SVD analyses of climatic data, CCGCR Report, 97-1 (1997).
  9. Chen Z, Zhang SR, Coster AJ, Fang G, EOF analysis and modeling of GPS TEC climatology over North America, J. Geophys. Res. 120, 3118-3129 (2015). https://dx.doi.org/10.1002/2014JA020837
  10. Choi BK, Cho JH, Lee SJ, Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula, Adv. Space Res. 47, 1590-1599 (2011). https://dx.doi.org/10.1016/j.asr.2010.12.021
  11. Choi BK, Park JU, Roh KM, Lee SJ, Comparison of GPS receiver DCB estimation methods using a GPS network, Earth Planets Space 65, 707-711 (2013). https://dx.doi.org/10.5047/eps.2012.10.003
  12. Gao Y, Liu ZZ, Precise ionosphere modeling using regional GPS network data, J. Glob. Position. Syst. 1, 18-24 (2002). https://doi.org/10.5081/jgps.1.1.18
  13. Huang CR, Liu CH, Yeh HC, Tsai WH, Wang CJ, et al., IRI model application in low latitude ionospheric tomography, Adv. Space Res. 18, 237-240 (1996). https://dx.doi.org/10.1016/0273-1177(95)00930-2
  14. Huang CR, Liu CH, Yeh HC, Tsai WH, Wang CJ, et al., IRI model application in low latitude ionospheric tomography, Adv. Space Res. 18, 237-240 (1996). https://dx.doi.org/10.1016/0273-1177(95)00930-2
  15. Klobuchar JA, Doherty PH, Bailey GJ, Davies K, Limitations in determining absolute total electron content from dualfrequency GPS group delay measurements, Proceedings of the International Beacon Satellite Symposium, Aberystwyth, UK, 11-15 Jul 1994.
  16. Kohl H, Ruster R, Schlegel K, Modern ionospheric science - a collection of articles published on the occasion of the anniversary: "50 years of ionospheric research in Lindau" (European Geophysical Society, Munich, 1996).
  17. Kunitsyn VE, Tereshchenko ED, Ionospheric Tomography (Springer, Heidelberg, 2003).
  18. Kunitsyn VE, Andreeva ES, Tereshchenko ED, Khudukon BZ, Nygren T, Investigations of the ionosphere by satellite radio tomography, Int. J. Imaging Syst. Technol. 5, 112-127 (1994). https://dx.doi.org/10.1002/ima.1850050208
  19. Lee HB, Jee G, Kim YH, Shim JS, Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys.Res. 118, 935-946 (2013). https://dx.doi.org/10.1002/jgra.50130
  20. Lin J, Yue X, Zeng Z, Lou Y, Shen X, et al., Empirical orthogonal function analysis and modeling of the ionospheric peak height during the years 2002-2011, J. Geophys. Res. 119, 3915-3929 (2014). https://dx.doi.org/10.1002/2013JA019626
  21. Pryse SE, Kersley L, Mitchell CN, Spencer PSJ, Williams MJ, A comparison of reconstruction techniques used in ionospheric tomography, Radio Sci. 33, 1767-1779 (1998). https://dx.doi.org/10.1029/98RS01613
  22. Ratovsky KG, Lin CH, Dmitriev AV, Suvorova AV, Shcherbakov AA, et al., Comparative study of COSMIC/FORMOSAT-3, incoherent scatter radar, ionosonde and IRI model electron density vertical profiles during the solar activity growth period, in IRI-2015 Workshop, Bangkok, Thailand, 2-13 Nov 2015.
  23. Ratovsky KG, Dmitriev AV, Suvorova AV, Shcherbakov AA, Alsatkin SS, et al., Comparative study of COSMIC/FORMOSAT-3, Irkutsk incoherent scatter radar, Irkutsk Digisonde and IRI model electron density vertical profiles, Adv. Space Res., in preparation (2017). https://dx.doi.org/10.1016/j.asr.2016.12.026
  24. Raymund TD, Ionospheric tomography algorithms, Int. J. Imaging Syst. Technol. 5, 75-85 (1994). https://dx.doi.org/10.1002/ima.1850050204
  25. Raymund TD, Comparisons of several ionospheric tomography algorithms, Ann. Geophys. 13, 1254-1262 (1995).
  26. Raymund TD, Austen JR, Franke SJ, Liu CH, Klobuchar JA, et al., Application of computerized tomography to the investigation of ionospheric structures, Radio Sci. 25, 771-789 (1990). https://dx.doi.org/10.1029/RS025i005p00771
  27. Shnayderman A, Gusev A, Eskicioglu AM, An SVD-based grayscale image quality measure for local and global assessment, IEEE Trans. Image Process. 15, 422-429 (2006). https://dx.doi.org/10.1109/TIP.2005.860605
  28. Shubin VN, Global median model of the F2-layer peak height based on ionospheric radio-occultation and groundbased Digisonde observations, Adv. Space Res. 56, 916-928 (2015). https://dx.doi.org/10.1016/j.asr.2015.05.029
  29. Sojka JJ, Thompson DC, Scherliess L, Schunk RW, Harris TJ, Assessing models for ionospheric weather specifications over Australia during the 2004 Climate and Weather of the Sun-Earth-System (CAWSES) campaign, J. Geophys. Res. 112, A09306 (2007). https://dx.doi.org/10.1029/2006JA012048
  30. Ssessanga N, Kim YH, Kim E, Vertical structure of medium-scale traveling ionospheric disturbances, Geophys. Res. Lett. 42, 9156-9165 (2015). https://dx.doi.org/10.1002/2015GL066093
  31. Yu Y, Wan W, Zhao B, Chen Y, Xiong B, et al., Modeling the global NmF2 from the GNSS-derived TEC-GIMs, Space Weather 11, 272-283 (2013). https://dx.doi.org/10.1002/swe.20052
  32. Zhao B, Wan W, Liu L, Yue X, Venkatraman S, Statistical characteristics of the total ion density in the topside ionosphere during the period 1996-2004 using empirical orthogonal function (EOF) analysis, Ann. Geophys. 23, 3615-3631 (2005). https://dx.doi.org/10.5194/angeo-23-3615-2005

피인용 문헌

  1. The estimation of receiver code bias for MyRTKnet stations vol.169, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/169/1/012029