References
- Ho JH, Hong CY. Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci. 2011 ; 18 : 30. https://doi.org/10.1186/1423-0127-18-30
- Yan X, Zhou T, Tao Y, Wang Q, Liu P, Liu C. Salvianolic acid B attenuates hepatocyte apoptosis by regulating mediators in death receptor and mitochondrial pathways. Exp Biol Med (Maywood). 2010 ; 235(5) : 623-32. https://doi.org/10.1258/ebm.2009.009293
- Chen T, Liu W, Chao X, Zhang L, Qu Y, Huo J, et al. Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice. Brain Res Bull. 2011 ; 84(2) : 163-8. https://doi.org/10.1016/j.brainresbull.2010.11.015
- Hao Y, Xie T, Korotcov A, Zhou Y, Pang X, Shan L, et al. Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer. 2009 ; 124(9) : 2200-9. https://doi.org/10.1002/ijc.24160
- Sun Y, Zhu H, Wang J, Liu Z, Bi J. Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity. J Chromatogr B. 2009 ; 877(8-9) : 733-7. https://doi.org/10.1016/j.jchromb.2009.02.013
- Wang J, Xiong X, Feng B. Cardiovascular effects of salvianolic acid B. Evid Based Complement Alternat Med. 2013 ; 2013 : 247948.
- Wang Y, Zhao X, Gao X, Nie X, Yang Y, Fan X. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants. Anal Chim Acta. 2011 ; 702(1) : 87-94. https://doi.org/10.1016/j.aca.2011.06.020
- Wang M, Sun GB, Sun X, Wang HW, Meng XB, Qin M, et al. Cardioprotective effect of salvianolic acid B against arsenic trioxide-induced injury in cardiac H9c2 cells via the PI3K/Akt signal pathway. Toxicol Lett. 2013 ; 216(2-3) : 100-7. https://doi.org/10.1016/j.toxlet.2012.11.023
- Liu M, Ye J, Gao S, Fang W, Li H, Geng B, et al. Salvianolic acid B protects cardiomyocytes from angiotensin II-induced hypertrophy via inhibition of PARP-1. Biochem Biophys Res Commun. 2014 ; 444(3) : 346-53. https://doi.org/10.1016/j.bbrc.2014.01.045
- Huang CY, Chen SY, Fu RH, Huang YC, Chen SY, Shyu WC, et al. Differentiation of embryonic stem cells into cardiomyocytes used to investigate the cardioprotective effect of salvianolic acid B through BNIP3 involved pathway. Cell Transplant. 2015 ; 24(3) : 561-71. https://doi.org/10.3727/096368915X686995
- Xu L, Deng Y, Feng L, Li D, Chen X, Ma C, et al. Cardio-protection of salvianolic acid B through inhibition of apoptosis network. PLoS One. 2011 ; 6(9) : e24036. https://doi.org/10.1371/journal.pone.0024036
- Jiang B, Chen J, Xu L, Gao Z, Deng Y, Wang Y, et al. Salvianolic acid B functioned as a competitive inhibitor of matrix metalloproteinase-9 and efficiently prevented cardiac remodeling. BMC Pharmacol. 2010 ; 10 : 10.
- Jiang B, Wu W, Li M, Xu L, Sun K, Yang M, et al. Cardioprotection and matrix metalloproteinase-9 regulation of salvianolic acids on myocardial infarction in rats. Planta Med. 2009 ; 75(12) : 1286-92. https://doi.org/10.1055/s-0029-1185669
- Deng Y, Zhang T, Teng F, Li D, Xu F, Cho K, et al. Ginsenoside Rg1 and Rb1, in combination with salvianolic acid B, play different roles in myocardial infarction in rats. J Chin Med Assoc. 2015 ; 78(2) : 114-20. https://doi.org/10.1016/j.jcma.2014.10.001
- Deng Y, Yang M, Xu F, Zhang Q, Zhao Q, Yu H, et al. Combined salvianolic acid B and ginsenoside Rg1 exerts cardioprotection against ischemia/reperfusion injury in rats. PLoS One. 2015 ; 10(8) : e0135435. https://doi.org/10.1371/journal.pone.0135435
- Wang Y, Xu P, Wang Y, Liu H, Zhou Y, Cao X. The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. Oxid Med Cell Longev. 2013 ; 2013 : 507832.
- Olah A, Nemeth BT, Matyas C, Horvath EM, Hidi L, Birtalan E, et al. Cardiac effects of acute exhaustive exercise in a rat model. Int J Cardiol. 2015 ; 182 : 258-66. https://doi.org/10.1016/j.ijcard.2014.12.045
- Scharhag J, George K, Shave R, Urhausen A, Kindermann W. Exercise-associated increases in cardiac biomarkers. Med Sci Sports Exerc. 2008 ; 40(8) : 1408-15. https://doi.org/10.1249/MSS.0b013e318172cf22
- Muthusamy VR, Kannan S, Sadhaasivam K, Gounder SS, Davidson CJ, Boeheme C, et al. Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med. 2012 ; 52(2) : 366-76. https://doi.org/10.1016/j.freeradbiomed.2011.10.440
- Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011 ; 301(6) : H2181-90. https://doi.org/10.1152/ajpheart.00554.2011
- Essen-Gustavsson B, Tesch PA. Glycogen and triglyceride utilization in relation to muscle metabolic characteristics in men performing heavy-resistance exercise. Eur J Appl Physiol Occup Physiol. 1990 ; 61(1-2) : 5-10. https://doi.org/10.1007/BF00236686
- Jacobs I, Sjodin B. Relationship of ergometer-specific VO2 max and muscle enzymes to blood lactate during submaximal exercise. Br J Sports Med. 1985 ; 19(2) : 77-80. https://doi.org/10.1136/bjsm.19.2.77
- Feng Y, You Z, Yan S, He G, Chen Y, Gou X, et al. Antidepressant-like effects of salvianolic acid B in the mouse forced swim and tail suspension tests. Life Sci. 2012 ; 90(25-26) : 1010-4. https://doi.org/10.1016/j.lfs.2012.05.021
- Wang MX, Liu YY, Hu BH, Wei XH, Chang X, Sun K, et al. Total salvianolic acid improves ischemia-reperfusion- induced microcirculatory disturbance in rat mesentery. World J Gastroenterol. 2010 ; 16(42) : 5306-16. https://doi.org/10.3748/wjg.v16.i42.5306
- Jiang B, Zhang L, Li M, Wu W, Yang M, Wang J, et al. Salvianolic acids prevent acute doxorubicin cardiotoxicity in mice through suppression of oxidative stress. Food Chem Toxicol. 2008 ; 46(5) : 1510-5. https://doi.org/10.1016/j.fct.2007.12.020
- Vollaard NB, Shearman JP, Cooper CE. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med. 2005 ; 35(12) : 1045-62. https://doi.org/10.2165/00007256-200535120-00004
- Lovlin R, Cottle W, Pyke I, Kavanagh M, Belcastro AN. Are indices of free radical damage related to exercise intensity. Eur J Appl Physiol Occup Physiol. 1987 ; 56(3) : 313-6. https://doi.org/10.1007/BF00690898
- Bloomer RJ, Goldfarb AH, Wideman L, McKenzie MJ, Consitt LA. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J Strength Cond Res. 2005 ; 19(2) : 276-85. https://doi.org/10.1519/14823.1
- Miyazaki H, Ohishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001 ; 84(1-2) : 1-6. https://doi.org/10.1007/s004210000342
- Balci SS, Pepe H. Effects of gender, endurance training and acute exhaustive exercise on oxidative stress in the heart and skeletal muscle of the rat. Chin J Physiol. 2012 ; 55(4) : 236-44. https://doi.org/10.4077/CJP.2012.BAA021
- Csont T, Bereczki E, Bencsik P, Fodor G, Gorbe A, Zvara A, et al. Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovasc Res. 2007 ; 76(1) : 100-9. https://doi.org/10.1016/j.cardiores.2007.06.006
- Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal. 2003 ; 5(6) : 731-40. https://doi.org/10.1089/152308603770380034
- Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Develop. 1999; 13(15): 1899-911. https://doi.org/10.1101/gad.13.15.1899
- Gibson ME, Han BH, Choi J, Knudson CM, Korsmeyer SJ, Parsadanian M, et al. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med. 2001 ; 7(9) : 644-55.
Cited by
- 최근 10년간 한방비만학회지의 연구동향 분석: 2010-2019년 한방비만학회지 게재논문을 중심으로 vol.20, pp.2, 2017, https://doi.org/10.15429/jkomor.2020.20.2.149