DOI QR코드

DOI QR Code

열경화성 에폭시 기지의 흡습탄성 거동에 관한 분자동역학 전산모사

A Molecular Dynamics Simulation Study on Hygroelastic behavior of Thermosetting Epoxy

  • Kwon, Sunyong (Department of Energy Engineering, Chung-Ang University) ;
  • Lee, Man Young (The 4th R&D Institute - 3, Agency for Defense Development) ;
  • Yang, Seunghwa (Department of Energy Systems Engineering, Chung-Ang University)
  • 투고 : 2017.09.04
  • 심사 : 2017.12.26
  • 발행 : 2017.12.31

초록

본 연구에서는 대표적인 열경화성 재료인 에폭시 기지의 흡습탄성 거동을 예측하기 위해 분자동역학 전산모사를수행하였다. 고분자 복합재가 오랜 시간 동안 흡습환경에 지속적으로 노출될 경우, 거시적 물성의 저하가 발생하기 때문에 복합재의 내구설계 측면에 있어 흡습노화 현상에 대해 분자스케일적으로 접근하는 방법은 매우 중요하다. 본 연구에서는 $EPON862^{(R)}$ 수지와 아민계 Triethylenetetramine (TETA) 경화제로 비정질 에폭시 분자모델을 구성하였으며, 각각 30과 90%의 가교 상태에서 수분 흡수 유무에 따른 물성변화를 관찰하였다. 건조상태의 에폭시와 수분이 4 wt% 포함된 에폭시 단위셀에 대한 평형 및 비평형 앙상블 전산모사 과정을 통해, 에폭시의 수분팽창계수, 응력-변형률 선도 및 탄성계수 그리고 침투된 수분의 수지 내 확산계수를 예측하였다. 또한 흡습된 구조와 그에 따른 물성변화의 상관관계를 규명하기 위해, 자유체적 변화 및 흡습에 따른 에폭시 수지의 비결합 포텐셜 에너지 변화를 관찰하였다.

In this study, hygroelastic behavior of thermosetting epoxy is predicted by molecular dynamics simulations. Since consistent exposures to humid environments lead to macroscopic degradation of polymer composite, computational simulation study of the hygroscopically aged epoxy cell is essential for long-time durability. Therefore, we modeled amorphous epoxy molecular unit cell structures at a crosslinking ratio of 30, 90% and with the moisture weight fraction of 0, 4 wt% respectively. Diglycidyl ether of bisphenol F (EPON862) and triethylenetetramine (TETA) are chosen as resin and curing agent respectively. Incorporating equilibrium and non-equilibrium ensemble simulation with a classical interatomic potential, various hygroelastic properties including diffusion coefficient of water, coefficient of moisture expansion (CME), stress-strain curve and elastic modulus are predicted. To establish the structural property relationship of pure epoxy, free volume and internal non-bond potential energy of epoxy are examined.

키워드

참고문헌

  1. U.S. Department of Transportation, Aviation Maintenance Technician Handbook-Airframe Volume 1, Federal Aviation Administration, 2012.
  2. C. Soutis, "Carbon Fiber Reinforced Plastics in Aircraft Construction", Materials Science and Engineering: A, Vol. 412, Issue. 1-2, 2005, pp. 171-176. https://doi.org/10.1016/j.msea.2005.08.064
  3. P. Irving and C. Soutis, Polymer Composites in the Aerospace Industry, Licentiate Thesis, KTH School of Engineering, Woodhead Publishing Imprint of Elsevier, 2014.
  4. J.-P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, "Lightweight Materials for Aircraft Applications" NRC Institute for Aerospace Research, Materials Characterization, Vol. 35, Issue 1, 1995, pp. 41-67. https://doi.org/10.1016/1044-5803(95)00066-6
  5. S. Yu, "A Study of Thermal Transport and Mechanical Properties of Epoxy Nanocomposites Considering thE Cross-linking Effect and the Hygrothermal Effect", Ph.D Thesis, Seoul National University, 2013.
  6. G.M. Odegard and A. Bandyopadhyay, "Physical Aging of Epoxy Polymers and Their Composites", Polymer Physics, Vol. 49, Issue 24, 2011, pp. 1695-1716. https://doi.org/10.1002/polb.22384
  7. J.M. Hutchinson, "Physical Aging of Polymers", Progress in Polymer Science, Vol. 20, Issue 4, 1995, pp. 703-760. https://doi.org/10.1016/0079-6700(94)00001-I
  8. Y. Li, Atomistic Modeling of Environmental Aging of Epoxy Resins, Ph.D Thesis, Georgia Institute of Technology, 2012.
  9. W.W. Wright, "The Effect of Diffusion of Water into Epoxy Resins and Their Carbon-fibre Reinforced Composites", Composites, Vol. 12, Issue 3, 1981, pp. 201-205. https://doi.org/10.1016/0010-4361(81)90505-X
  10. Y. Pan and Z. Zhong, "A Micromechanical Model for the Mechanical Degradation of Natural Fiber Reinforced Composites Induced by Moisture Absorption", Mechanics of Materials, Vol. 85, 2015, pp. 7-15. https://doi.org/10.1016/j.mechmat.2015.02.001
  11. K. Imielinska and L. Guillaumat, "The Effect of Water Immersion Ageing on Low-velocity Impact behavior of Woven Aramid Glass Fibre/epoxy Composites", Composites Science and Technology, Vol. 62, Issue 13-14, 2004, pp. 2271-2278.
  12. S. Choi and S. Yang, "Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites", Vol. 30, No. 4, 2017, pp. 247-253. https://doi.org/10.7234/COMPOSRES.2017.30.4.247
  13. V. Varshney, S.S. Paatnaik, A.K. Roy, and B.L. Farmer, "A Molecular Dynamics Study of Epoxy-Based Networks: Cross-Linking Procedure and Prediction of Molecular and Material Properties", Macromolecules, Vol. 41, 2008, pp. 6837-6842. https://doi.org/10.1021/ma801153e
  14. J. Jin and S. Yang, "Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites: the Effects of Covalent Grafting", Composites Research, Vol. 30, No. 3, 2017, pp. 193-201. https://doi.org/10.7234/COMPOSRES.2017.30.3.193
  15. W.G. Hoover, "Canonical Dynamics: Equilibrium Phase-space Distributions", Physical Review A, Vol. 31, No. 3, 1984, pp. 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  16. W.G. Hoover, "Constant-pressure Equations of Motion", Physical Review A, Vol. 34, No. 3, 1986, pp. 2499-2500. https://doi.org/10.1103/PhysRevA.34.2499
  17. Donald A. McQuarrie, Statistical Mechanics, University of Science Books, 2000.
  18. Plimpton, S., "Fast Parallel Algorithms for Short-range Molecular Dynamics", Journal of Computational Physics, Vol. 117, 1995, pp. 1-19. https://doi.org/10.1006/jcph.1995.1039
  19. H.B. Fan and M.M.F. Yuen, "Material Properties of the Crosslinked Epoxy Resin Compound Predicted by Molecular Dynamics Simulation", Polymer, Vol. 48, Issue 7, 2007, pp. 2174-2178. https://doi.org/10.1016/j.polymer.2007.02.007
  20. R.J. Morgan, J. O'Neal and D.L. Fanter, "The Effect of Moisture on the Physical and Mechanical Integrity of Epoxies", Journal of Materials Science, Vol. 15, 1980, pp. 751-764. https://doi.org/10.1007/BF00551743
  21. L.H. Tam and D. Lau, "Moisture Effect on the Mechanical and Interfacial Properties of Epoxy-bonded Material System: An Atomistic and Experimental Investigation", Polymer, Vol. 57, 2015, pp. 132-142. https://doi.org/10.1016/j.polymer.2014.12.026
  22. Y. Li and B. Xue, "Hydrothermal Ageing Mechanisms of Unidirectional Flax Fabric Reinforced Epoxy Composites", Polymer Degradation and Stability, Vol. 126, 2016, pp. 144-158. https://doi.org/10.1016/j.polymdegradstab.2016.02.004
  23. T.P. Ferguson and J. Qu, "Elastic Modulus Variation Due to Moisture Absorption and Permanent Changes upon Redrying in an Epoxy Based Underfill", IEEE Transactions and Packaging Technologies, Vol. 29, No. 1, 2006, pp. 105-111. https://doi.org/10.1109/TCAPT.2005.853172