DOI QR코드

DOI QR Code

Effect of KNO3 Priming on Various Properties of Kenaf Seed under Non-Saline and Saline Conditions

  • Lee, In-Sok (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extention Services) ;
  • Kang, Chan-Ho (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extention Services) ;
  • Lee, Ki-Kwon (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extention Services)
  • Received : 2017.08.21
  • Accepted : 2017.10.12
  • Published : 2017.12.31

Abstract

The main objective of this study was to increase the germination percentage of kenaf seeds with less number of times under non-saline and saline conditions. Therefore, the first goal was to assess the response of kenaf seeds to NaCl. The second goal was to evaluate the effects of $KNO_3$ on kenaf seed germination. The germination percentage exhibited a decreasing tendency in germination rate. Plant dry weight was approximately 0.2 g in all treatments at 5 days after germination. As time passed, the electrical conductivity (EC) value of hydro-priming (HP) consistently increased by 8.7 mS/cm at 24 hours of immersion. However, seeds primed with $KNO_3$ showed no difference in EC values even as times passed. Regarding the priming effect, priming in 100 mM $KNO_3$ concentration for 12 hours increased germination up to 85% in $H_20$ solution and in 0 mM $KNO_3$ concentration upto 73.8% under 0.3% NaCl solution, compared to that of Control. Germination synchronization, shoot length, and leaf unfolding of primed seeds were greater than those of the Control. In addition, main root and hair roots appeared more rapidly in the treated seeds and were more abundant compared to that of the Control. The T50 (times to reach 50% of the final germination percentage) of the Control in both $H_20$ and 0.3% NaCl solutions was 18 and 22 hours, respectively. However, when treated $KNO_3$ priming (0 to 100 mM) in $H_20$ and 0.3% NaCl solution, 9 hours was sufficient to reach T50. Primed (hydro-priming and $KNO_3$) seeds had a lower MDG (mean days untill germination; 0.6-0.62) compared to that of the Control (1.13-1.31) in $H_20$ and 0.3% NaCl solutions. Regarding dry weight of plants after priming, an increasing tendency after the priming treatment in the H20 solution was observed. Furthermore, no significant difference in plant dry weight under 0.3% NaCl stress was observed between the Control and primed seeds. Taken together, the results suggest that 50-100 mM $KNO_3$ priming for 24 hours optimize seed germination rate in less number of times of exposure with great vigor. Therefore, it is recommended for kenaf seed invigoration before planting.

Keywords

References

  1. Bae, K. W., M. S. Ko, N. Y. Kim, J. M. Song, Y. J. Song, and K. P. Kim. 2014. Effects of priming and ultra sound on seed germination from Ardisia crenata Sims, on ornamental plant. Korea J. Nature Conservation. 8(1) : 1-7. https://doi.org/10.11624/KJNC.2014.8.1.001
  2. Bradford, K. J. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort Science 21 : 1105-1112.
  3. Bird, L. S. 1982. The MAR (multi-adversity resistance) system for genetic improvement of cotton. Plant Dis. 66 : 172-176. https://doi.org/10.1094/PD-66-172
  4. Carberry, P. S. and D. G. Abrecht. 1990. Germination and elongation of the hypocotyls and radicle of kenaf (Hibiscus cannabinus) in response to temperature. Field Crops Research. 24(3-4) : 227-240. https://doi.org/10.1016/0378-4290(90)90040-I
  5. Cook, C. G., M. V. Hickmanb, C. L. Webber, J. W. Sij, and A. W. Scotte. 1992. Fungicide treatment effects on kenaf seed germination and stand establishment. Industrial Crops and Products. I 41-45.
  6. Curtis, P. S. and A. Läuchli. 1985. Responses of kenaf to salt stress: germination and vegetative growth. Crop Sci. 25(6) : 944-949. https://doi.org/10.2135/cropsci1985.0011183X002500060011x
  7. Curtis, P. S. and A. Läuchli. 1986. The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress. Aust. J. Plant Physiol. 13 : 553-565. https://doi.org/10.1071/PP9860553
  8. Danalatos, N. G. and S. V. Archontoulis. 2010. Growth and biomass productivity of kenaf (Hibiscus cannabinus L.) under different agricultural inputs and management practices in central Greece. Ind Crop Prod. 32 : 231-240. https://doi.org/10.1016/j.indcrop.2010.04.013
  9. Daniel, I. O., O. N. Adeniyan, J. A. Adetumbi, M. A. Okelana, S. A. Olakojo, M. O. Ajala, O. A. Aluko, and M. A. Adekoya. 2012. Hydro-priming improved germination and vigour of kenaf (Hibiscus cannabinus L.) seeds. Food, Agriculture and Environment. 10(2) : 760-763.
  10. Ella, E. S., M. L. Dionisio-Sese, and A. M. Ismail. 2011. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB. PLANTS. 2011 plr007 doi:10.1093/aobpla/plr007.
  11. Farooq, M., S. M. A. Basra, R. Tabassum, and I. Afzal. 2006. Enhancing the performance of direct-seeded fine rice by seed priming. Plant Production Science. 9 : 446-456. https://doi.org/10.1626/pps.9.446
  12. Francois, L. E., T. J. Donovan, and E. V. Maas. 1990. Salt tolerance of kenaf. p. 300-301. In: J. Janick and J.E. Simon (eds.), Advances in new crops. Timber Press, Portland, OR.
  13. Francois, L. E., T. J. Donovan, and E. V Maas. 1992. Yield, vegetativc growth, and fiber length of kenaf grown on saline soil. Agron. J. 84 : 592-598. https://doi.org/10.2134/agronj1992.00021962008400040010x
  14. Hendricks, S. B. and R. B. Taylorson. 1974. Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts. Plant Physiology. 54 : 304-309. https://doi.org/10.1104/pp.54.3.304
  15. Ismail, A. I., M. M. El-Araby, A. Z. A. Hegazi, and S. M. A. Moustafa. 2005. Optimization of priming benefits in tomato (Lycopersicon esculentum M.) and changes in some osmolytes during the hydration phase. Asian Journal of Plant Sciences. 4(6) : 691-701. https://doi.org/10.3923/ajps.2005.691.701
  16. Jahangir, M. M., M. Amjad, I. Afzal, Q. Iqbal, and A. Nawaz. 2009. Lettuce achene invigoration through osmopriming at supraoptimal temperature. Pakistan Journal of Agricultural Sciences. 46 : 1-6.
  17. Janmohammadi, M., P. M. Dezfuli, and F. Sharifzadeh. (2008). Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. General and Applied Plant Physiology. 4 : 215-226.
  18. Kang, J. S., B. G. Son, and C. K Ahn. 2003. Effect of Seed Priming on the Germination Performance and Membrane Integrity of Tomato (Lycopersicon esculentum Mill.) Seeds. J. of Bio-Environment Control. 12(4) : 221-227.
  19. Kim, D. H., B. J. Ahn, H. J. An, Y. S. Ahn, Y. G. Kim, C. G. Park, C. B. Park, S. W. Cha, and B. H. Song. 2014. Studies on seed germination characteristics and patterns of protein expression of Lithospermum erythrorhizon by plant growth regulators and seed primings. Korean J. Medicinal Crop Sci. 22(6) : 435-441. https://doi.org/10.7783/KJMCS.2014.22.6.435
  20. Lee, S. H., Y. An, S. H. Yoo, and S. M. Lee. 2000. Changes in early stage vegetation succession as affected desalinization process in Dea-Ho reclaimed land. Korean J. Environ. Agri. 19(4) : 364-369.
  21. Lee, K. B. 2012. The Third New Continent, Reclaimed land. ISSN : 2233-5056
  22. Maas, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assessment. J. Irrig. Drainage Div. 103 : 115-134.
  23. Mir-Mahmoodi, T., K. Ghassemi-Golezani, D. Habibi, F. Paknezhad, and M. R. Ardekani. 2011. Effects of priming techniques on seed germination and seedling emergence of maize (Zea mays L.). Journal of Food, Agric. & Env. 9(2) : 200-202.
  24. Nerson, H. and A. Govers. 1986. Salt priming of muskmelon seeds for low-temperature germination. Scientia Hort. 28 : 85-91. https://doi.org/10.1016/0304-4238(86)90127-5
  25. Oh, Y. Y., S. H. Lee, Y. J. Kim, J. T. Kim, J. H. Ryu, S. Kim, J. Jin, H. S. Bae, S. H. Lee, Y. D. Kim, H. C. Hong, and S. L Kim. 2015. Influence of seed germination by treatment of seed dormancy in Indian Jointvetch seed. J. Korean Soc. Int. Agric. 27(5) : 663-666. https://doi.org/10.12719/KSIA.2015.27.5.663
  26. Roberts, E. H. 1986. Quantifying seed deterioration. In: McDonald MB (ed.). Physiology of seed deterioration. Crop Science Society of America, Madison, WI. pp. 101-123.
  27. Shekari, f., S. Mustafavi, and A. Abbasi. 2015. Sonication of seeds increase germination performance of sesame under low temperature stress. Acta Agriculturae Slovenica. 105(2) : 203-212. https://doi.org/10.14720/aas.2015.105.2.03
  28. Singh, A., R. Dahiru, M. Musa, and B. S. Haliru. 2014. Effect of oak apple osmopriming duration on germination, emergence, and early growth of cowpea (Vigna unguiculata (L.) Walp.) in the sudan savanna of nigeria. International Journal of Agronomy. 2014:1-4. http://dx.doi.org/10.1155/2014/841238.
  29. Sírová, J., M. Sedlárová, J. Piterková, L. Luhová, and M. Petrivalsky. 2011 The role of nitric oxide in the germination of plant seeds and pollen. Plant Science. 118 : 560-572.
  30. Wang, Y. T. 1994. Using ground kenaf stem core as a major component of container media. J. Amer. Soc. Hort. Sci. 119(5) : 931-935.
  31. Webber, C. L. III, H. L. Bhardwaj, and V. K. Bledsoe. 2002. Kenaf production: Fiber, feed, and seed. p. 327-339. In: J. Janick and A. Whipkey (eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA.
  32. Yaldagard, M., S. A. Mortazavi, and F. Tabatabaie. 2008. Influence of ultrasonic stimulation on the germination of barley seed and its alpha-amylase activity. African Journal of Biotechnology. 7(14) : 2465-2471.