References
- Li Y, Zhou YC, Yang MH, Ou-Yang Z. 2012. Natural occurrence of citrinin in widely consumed traditional Chinese food red yeast rice, medicinal plants and their related products. Food Chem. 132: 1040-1045. https://doi.org/10.1016/j.foodchem.2011.11.051
- Magro M, Moritz DE, Bonaiuto E, Baratella D, Terzo M, Jakubec P, et al. 2016. Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles. Food Chem. 203: 505-512. https://doi.org/10.1016/j.foodchem.2016.01.147
- European Food Safety Authority. 2012. Scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 10: 2605. https://doi.org/10.2903/j.efsa.2012.2605
- Phillips RD, Hayes AW, Berndt WO, Williams W. 1980. Effects of citrinin on renal function and structure. Toxicology 16: 123-127. https://doi.org/10.1016/0300-483X(80)90043-8
- Gupta M, Sasmal D, Bandyopadhyay S, Bagchi G, Chatterjee T, Dey S. 1983. Hematological changes produced in mice by ochratoxin A and citrinin. Toxicology 26: 55-62. https://doi.org/10.1016/0300-483X(83)90056-2
- Pascual-Ahuir A, Vanacloig-Pedros E, Proft M. 2014. Toxicity mechanisms of the food contaminant citrinin: application of a quantitative yeast model. Nutrients 6: 2077-2087. https://doi.org/10.3390/nu6052077
- Ribeiro SM, Chagas GM, Campello AP, Kluppel ML. 1997. Mechanism of citrinin-induced dysfunction of mitochondria. 5. Effect on the homeostasis of the reactive oxygen species. Cell Biochem. Funct. 15: 203-209. https://doi.org/10.1002/(SICI)1099-0844(199709)15:3<203::AID-CBF742>3.0.CO;2-J
- Da Lozzo EJ, Mangrich AS, Rocha ME, De Oliveira MB, Carnieri EG. 2002. Effects of citrinin on iron-redox cycle. Cell Biochem. Funct. 20: 19-29. https://doi.org/10.1002/cbf.931
- Da Lozzo EJ, Oliveira MB, Carnieri EG. 1998. Citrinin-induced mitochondrial permeability transition. J. Biochem. Mol. Toxicol. 12: 291-297. https://doi.org/10.1002/(SICI)1099-0461(1998)12:5<291::AID-JBT5>3.0.CO;2-G
- CAST. 2003. Mycotoxin: Risks in Plant, Animal, and Human Systems. Council of Agricultural Science and Technology, Task Force Report No. 139. CAST, Ames, IA.
- Xu BJ, Jia XQ, Gu LJ, Sung CK. 2006. Review on the qualitative and quantitative analysis of the mycotoxin citrinin. Food Control 17: 271-285. https://doi.org/10.1016/j.foodcont.2004.10.012
- Blaszkewicz M, Munoz K, Degen GH. 2013. Methods for analysis of citrinin in human blood and urine. Arch. Toxicol. 87: 1087-1094. https://doi.org/10.1007/s00204-013-1010-z
- Kononenko GP, Burkin AA. 2008. A survey on the occurrence of citrinin in feeds and their ingredients in Russia. Mycotoxin Res. 24: 3-6. https://doi.org/10.1007/BF02985263
- Aziz NH, Moussa LAA. 2002. Influence of gamma-radiation on mycotoxin producing moulds and mycotoxins in fruits. Food Control 13: 281-288. https://doi.org/10.1016/S0956-7135(02)00028-2
- Tokusoglu O, Alpas H, Bozoglu F. 2010. High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innov. Food Sci. Emerg. 11: 250-258. https://doi.org/10.1016/j.ifset.2009.11.005
- Var I, Kabak B, Erginkaya Z. 2008. Reduction in ochratoxin A levels in white wine, following treatment with activated carbon and sodium bentonite. Food Control 19: 592-598. https://doi.org/10.1016/j.foodcont.2007.06.013
- Belli N, Marin S, Sanchis V, Ramos AJ. 2006. Impact of fungicides on Aspergillus carbonarius growth and ochratoxin A production on synthetic grapelike medium and on grapes. Food Addit. Contam. 23: 1021-1029. https://doi.org/10.1080/02652030600778702
- Cao J, Zhang HY, Yang QY, Ren R. 2013. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. Int. J. Food Microbiol. 162: 167-173. https://doi.org/10.1016/j.ijfoodmicro.2013.01.007
- Ponsone ML, Chiotta ML, Combina M, Dalcero A, Chulze S. 2011. Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. Int. J. Food Microbiol. 151: 70-77. https://doi.org/10.1016/j.ijfoodmicro.2011.08.005
- Zhang HY, Apaliya MT, Mahunu GK, Chen LL, Li WH. 2016. Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: a review. Trends Food Sci. Technol. 51: 88-97. https://doi.org/10.1016/j.tifs.2016.03.012
- Peteri Z, Teren J, Vagvolgyi C, Varga J. 2007. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol. 24: 205-210. https://doi.org/10.1016/j.fm.2006.06.003
- Mahunu GK, Zhang HY, Y ang QY, Li CL, Zheng XF. 2016. Biological control of patulin by antagonistic yeast: a case study and possible model. Crit. Rev. Microbiol. 42: 643-655.
- Grazioli B, Fumi MD, Silva A. 2006. The role of processing on ochratoxin A content in Italian must and wine: a study on naturally contaminated grapes. Int. J. Food Microbiol. 111: S93-S96. https://doi.org/10.1016/j.ijfoodmicro.2006.01.045
- Wilson CL, Wisniewski ME. (Eds.). 1994. Biological Control of Postharvest Diseases: Theory and Practice. CRC Press, Boca Raton.
- Piotrowsk M. 2012. Adsorption of ochratoxin A by Saccharomyces cerevisiae living and non-living cells. Acta Aliment. 41: 1-7.
- Yang QY, Wang JJ, Zhang HY, Li CL, Zhang XY. 2016. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic degradation products. World Mycotoxin J. 9: 269-278. https://doi.org/10.3920/WMJ2015.1911
- Abd-Allah EE, Ezzat SM. 2005. Natural occurrence of citrinin in rice grains and its biocontrol by Trichoderma hamatum. Phytoparasitica 33: 73-84. https://doi.org/10.1007/BF02980928
- Chen YH, Sheu SC, Mau JL, Hsieh PC. 2010. Isolation and characterization of a strain of Klebsiella pneumoniae with citrinin-degrading activity. World J. Microbiol. Biotechnol. 27: 487-493.
- Kanpiengjai A, Mahawan R, Lumyong S, Khanongnuch C. 2015. A soil bacterium Rhizobium borbori and its potential for citrinin-degrading application. Ann. Microbiol. 66: 807-816.
- Guillamon JM, Sabate J, Barrio E, Cano J, Querol A. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169: 387-392. https://doi.org/10.1007/s002030050587
- Shen T, Wang GH, You L, Zhang L, Ren HW, Hu WC, et al. 2017. Polysaccharide from wheat bran induces cytokine expression via the Toll-like receptor 4-mediated p38 MAPK signaling pathway and prevents cyclophosphamide-induced immunosuppressionin mice. Food Nutr. Res. 61: 1344523. https://doi.org/10.1080/16546628.2017.1344523
- Azizi IG, Gorgi M, Rouhi S, Azimi M, Shakib P, Shahbazi B, et al. 2014. Citrinin reduction in wheat flour by using "Yeast Saccharomyces Cerevisiae". Iran. J. Public Health 43: 241-241.
- Patharajan S, Reddy KRN, Karthikeyan V, Spadaro D, Lore A, Gullino ML, et al. 2011. Potential of yeast antagonists on in vitro biodegradation of ochratoxin A. Food Control 22: 290-296. https://doi.org/10.1016/j.foodcont.2010.07.024
- Petruzzi L, Bevilacqua A, Baiano A, Beneduce L, Corbo MR, Sinigaglia M. 2014. Study of Saccharomyces cerevisiae W13 as a functional starter for the removal of ochratoxin A. Food Control 35: 373-377. https://doi.org/10.1016/j.foodcont.2013.07.033
- Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, et al. 2013. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl. Environ. Microbiol. 79: 3101-3115. https://doi.org/10.1128/AEM.03851-12
- Sumbu ZL, Thonart P, Bechet J. 1983. Action of patulin on a yeast. Appl. Environ. Microbiol. 45: 110-115.
- Afsah-Hejri L, Jinap S, Mirhosseini H. 2012. Ochratoxin A quantification: newly developed HPLC conditions. Food Control 23: 113-119. https://doi.org/10.1016/j.foodcont.2011.06.020
- Gil-Serna J, Patino B, Cortes L, Gonzalez-Jaen MT, Vazquez C. 2011. Mechanisms involved in reduction of ochratoxin A produced by Aspergillus westerdijkiae using Debaryomyces hansenii CYC 1244. Int. J. Food Microbiol. 151: 113-118. https://doi.org/10.1016/j.ijfoodmicro.2011.08.012
Cited by
- Biological detoxification of Monascus purpureus pigments by heat‐treated Saccharomyces cerevisiae vol.99, pp.9, 2017, https://doi.org/10.1002/jsfa.9680
- The Effect of Blue Light on the Production of Citrinin in Monascus purpureus M9 by Regulating the mraox Gene through lncRNA AOANCR vol.11, pp.9, 2019, https://doi.org/10.3390/toxins11090536
- Elucidation of the Initial Growth Process and the Infection Mechanism of Penicillium digitatum on Postharvest Citrus (Citrus reticulata Blanco) vol.7, pp.11, 2017, https://doi.org/10.3390/microorganisms7110485
- The effect of Rhodotorula mucilaginosa on degradation of citrinin production by Penicillium digitatum and its toxin in vitro vol.13, pp.4, 2017, https://doi.org/10.1007/s11694-019-00220-6
- Effect of Rhodotorula mucilaginosa on patulin degradation and toxicity of degradation products vol.38, pp.8, 2021, https://doi.org/10.1080/19440049.2021.1923821