DOI QR코드

DOI QR Code

개체병렬결합 그리고 노화 연구

Parabiosis and Aging Researches

  • 투고 : 2017.11.21
  • 심사 : 2017.12.27
  • 발행 : 2017.12.30

초록

대부분의 사람은 오래 살기를 원한다. 고대 중국과 한국의 신화에 동방삭이라는 인물이 일만 팔천 년을 살았다고 전해진다. 현실 세계에서는 WHO의 보고에 따르면 사람의 평균수명이 1960년대에 50세에서 2016년에는 75-85세로 25~35세가 늘었다. 두 마리의 실험 동물을 외과적 수술을 통해 병렬로 결합하여 두 동물의 순환계(혈액)이 서로 연결되게 하는 개체병렬결합(parabiosis) 실험모델이 1860년도에 개발된 이래 이 방법은 in vivo에서 한 개체가 다른 개체에게 어떤 영향을 미칠 수 있는가에 대한 연구를 위한 강력한 실험 모델이 되어 왔다. 여러 가지 실험조건의 연구 중에서도 개체병렬결합모델은 노화의 진행을 역행하는 현상을 조사하는 연구에서 필수적인 모델이 되고 있다. 본 총설에서는 개체병렬결합모델의 탄생과 이로 인한 중요한 발견을 시간대에 따라 소개하며, 아직은 확정적이지는 않지만 젊은 쥐와 늙은 쥐의 순환계를 연결시킨 이 모델을 사용하여 노화의 진행을 역행시킬 수 있는 "젊음의 인자"인 growth differentiation factor 11 (GDF11)을 발견한 연구 결과에 대해 서술하고자 한다. 지금까지 밝혀지고 있는 여러 조건에서의 연구결과가 증명하였듯이 개체병렬결합모델은 향후 다양한 생리적 현상을 규명하는데 더욱 중요한 실험모델이 될 것으로 예상된다.

Most people have a desire to live longer. According to ancient Chinese and Korean mythology, Dongfang Shuo (Dongbang Sahk) lived for 18,000 years. According to a WHO report, the average longevity of humans has extended from 50-odd years in the 1960s to 75-85 years in 2016. Parabiosis, the joining to circulatory systems of two animals, was described as early as the 1860s. It provides a powerful experimental model to investigate the effects of one animal on its partner animal in vivo. Research on reverse aging is an immensely popular in parabiosis studies. In this review, the origin of the parabiosis model and important historical findings based on parabiosis models are presented. Surprising and debated discoveries in aging research are also introduced. Using heterochronic parabiosis of connecting circulatory systems of a young mouse and old mouse, various groups claim to have identified a reverse aging factor, growth differentiation factor 11 (GDF11), which was significantly reduced in blood of old mice. Although the potential existence of any one factor or factors that could reverse aging remains to be confirmed, studies have shown that the parabiosis model is powerful enough to detect reverse aging factors.

키워드

참고문헌

  1. Andre, F. E., Booy, R., Bock, J., Clemens, H. L., Datta, S. K., John, T. J., Lee, B. W., Lolekha, S., Peltola, H., Ruff, T. A., Santosham, M. and Schmitt, H. J. 2008. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Org. 86, 81-160.
  2. Bahary, N., Leibel, R. L., Joseph, L. and Friedman, J. M. 1990. Molecular mapping of the mouse db mutation. Proc. Natl. Acad. Sci. USA 87, 8642-8646. https://doi.org/10.1073/pnas.87.21.8642
  3. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S. and Wright, W. E. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352. https://doi.org/10.1126/science.279.5349.349
  4. Bucher, N. L., Scott, J. F. and Aub, J. C. 1951. Regeneration of the liver in parabiotic rats. Cancer Res. 11, 457-465.
  5. Calderwood, S. K., Murshid, A. and Prince, T. 2009. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology 55, 550-558. https://doi.org/10.1159/000225957
  6. Coleman, D. L. and Hummel, K. P. 1969. Effects of parabiosis of normal with genetically diabetic mice. Am. J. Physiol. 217, 1298-1304.
  7. Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L. and Rando, T. A. 2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760-764. https://doi.org/10.1038/nature03260
  8. Conboy, M. J. and Conboy, I. M. 2009. Parabiosis in aging research and regenerative medicine. Methods in Bioengineering: Stem Cell Bioengineering. Artech. House, Norwood, MA, USA 125-142.
  9. Conboy, M. J., Conboy, I. M. and Rando, T. A. 2013. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12, 525-530. https://doi.org/10.1111/acel.12065
  10. Dahl, L. K., Knudsen, K. D. and Iwai, J. 1969. Humoral transmission of hypertension: evidence from parabiosis. Circ. Res. 24, 21-33.
  11. Duyverman, A. M., Kohno, M., Duda, D. G., Jain, R. K. and Fukumura, D. 2012. A transient parabiosis skin transplantation model in mice. Nat. Protoc. 7, 763-770. https://doi.org/10.1038/nprot.2012.032
  12. Eggel, A. and Wyss-Coray, T. 2014. A revival of parabiosis in biomedical research. Swiss Med. Wkly. 144, w13914.
  13. Egerman, M. A., Cadena, S. M., Gilbert, J. A., Meyer, A., Nelson, H. N., Swalley, S. E., Mallozzi, C., Jacobi, C., Jennings, L. L., Clay, I., Laurent, G., Ma, S., Brachat, S., Lach-Trifilieff, E., Shavlakadze, T., Trendelenburg, A. U., Brack, A. S. and Glass, D. J. 2015. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22, 164-174. https://doi.org/10.1016/j.cmet.2015.05.010
  14. Green, E. D., Watson, J. D. and Collins, F. S. 2015. Human Genome Project: Twenty-five years of big biology. Nature 526, 29-31. https://doi.org/10.1038/526029a
  15. Halaas, J. L., Gajiwala, K. S., Maffei, M., Cohen, S. L., Chait, B. T., Rabinowitz, D., Lallone, R. L., Burley, S. K. and Friedman, J.M. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543-546. https://doi.org/10.1126/science.7624777
  16. Harris, R. B. 2013. Contribution made by parabiosis to the understanding of energy balance regulation. Biochim. Biophys. Acta. 1832, 1449-1455. https://doi.org/10.1016/j.bbadis.2013.02.021
  17. Harrison, D. E. and Astle, C. M. 1982. Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767-1779. https://doi.org/10.1084/jem.156.6.1767
  18. Hausberger, F. X. 1958. Parabiosis and transplantation experiments in hereditarily obese mice. Anat. Rec. 130, 313.
  19. Heather, J. M. and Chain, B. 2016. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1-8. https://doi.org/10.1016/j.ygeno.2015.11.003
  20. http://sageke.sciencemag.org/
  21. Iwai, J., Knudsen, K. D., Dahl, L. K., Heine, M. and Leitl, G. 1969. Genetic influence on the development of renal hypertension in parabiotic rats. Evidence for a humoral factor. J. Exp. Med. 129, 507-522. https://doi.org/10.1084/jem.129.3.507
  22. James, M. 2016. Heather, Benjamin Chain, The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1-8. https://doi.org/10.1016/j.ygeno.2015.11.003
  23. Johnson, D. C. 1981. Changes in follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol and progesterone concentrations in the sera of anovulatory androgenized female and castrated male parabiotic rats of the Fischer-344 strain. J. Endocrinol. 88, 321-328. https://doi.org/10.1677/joe.0.0880321
  24. Katsimpardi, L., Litterman, N. K., Schein, P. A., Miller, C. M., Loffredo, F. S., Wojtkiewicz, G. R., Chen, J. W., Lee, R. T., Wagers, A. J. and Rubin, L. L. 2014. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630-634. https://doi.org/10.1126/science.1251141
  25. Koga, H., Kaushik, S. and Cuervo, A. M. 2011. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res. Rev. 10, 205-215. https://doi.org/10.1016/j.arr.2010.02.001
  26. Lander, E. S., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
  27. Lee, Y. S. 2008. Politician Dongbang Sahk with Wit. Mulrae: Paju, Korea.
  28. Lee, Y. W. 2017. Global IT companies looking for Anti-aging medicinal Plants. Chosunilbo. May 09.
  29. Loffredo, F. S., Steinhauser, M. L., Jay, S. M., Gannon, J., Pancoast, J. R., Yalamanchi, P., Sinha, M., Dall'Osso, C., Khong, D., Shadrach, J. L., Miller, C. M., Singer, B. S., Stewart, A., Psychogios, N., Gerszten, R. E., Hartigan ,A. J., Kim, M. J., Serwold, T., Wagers, A. J. and Lee, R. T. 2013. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828-839. https://doi.org/10.1016/j.cell.2013.04.015
  30. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. and Kroemer, G. 2013. The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  31. Madigan, M., Martinko, J. and Parker, J. 2000. Brock Biology of Microorganisms, 9th ed. Prentice Hall, USA.
  32. Martin, G. M., LaMarco, K., Strauss, E. and Kelner, K. L. 2003. Research on aging: The end of the beginning. Science 299, 1339-1341. https://doi.org/10.1126/science.299.5611.1339
  33. Morozova, O. and Marra, A., 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255-264. https://doi.org/10.1016/j.ygeno.2008.07.001
  34. Moskalev, A. A., Shaposhnikov, M. V., Plyusnina, E. N., Zhavoronkov, A., Budovsky, A., Yanai, H. and Fraifeld, V. E. 2013. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res. Rev. 12, 661-684. https://doi.org/10.1016/j.arr.2012.02.001
  35. Neves, J., Demaria, M., Campisi, J. and Jasper, H. 2015. Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging. Dev. Cell. 32, 9-18. https://doi.org/10.1016/j.devcel.2014.11.028
  36. Owen, J., Punt, J. and Stranford, S. 2013. Kuby Immunology, 7th ed. W. H. Freeman, USA.
  37. Park, C. B. and Larsson, N. G. 2011. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809-818. https://doi.org/10.1083/jcb.201010024
  38. Sahin, E. and Depinho, R. A. 2012. Axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol. 13, 397-404. https://doi.org/10.1038/nrm3352
  39. Schumacher, B., van der Pluijm, I., Moorhouse, M. J., Kosteas, T., Robinson, A. R., Suh, Y., Breit, T. M., van Steeg, H., Niedernhofer, L. J. and van Ijcken, W., et al. 2008. Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 4, e1000161. https://doi.org/10.1371/journal.pgen.1000161
  40. Sinha, M., Jang, Y. C., Oh, J., Khong, D., Wu, E. Y., Manohar, R., Miller, C., Regalado, S. G., Loffredo, F. S., Pancoast, J. R., Hirshman, M. F., Lebowitz, J., Shadrach, J. L., Cerletti, M., Kim, M. J., Serwold, T., Goodyear, L. J., Rosner, B., Lee, R. T. and Wagers, A. J. 2014. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649-652. https://doi.org/10.1126/science.1251152
  41. Venter, J. C., et al. 2001. The sequence of the human genome. Science 291, 1304-1351. https://doi.org/10.1126/science.1058040
  42. Villeda, S. A., Plambeck, K. E., Middeldorp, J., Castellano, J. M., Mosher, K. I., Luo, J., Smith, L. K., Bieri, G., Lin, K., Berdnik, D., Wabl, R., Udeochu, J., Wheatley, E. G., Zou, B., Simmons, D. A., Xie, X. S., Longo, F. M. and Wyss-Coray, T. 2014. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659-663. https://doi.org/10.1038/nm.3569
  43. Walker, R. G., Poggioli, T., Katsimpardi, L., Buchanan, S. M., Oh, J., Wattrus, S., Heidecker, B., Fong, Y. W., Rubin, L. L., Ganz, P., Thompson, T. B., Wagers, A. J. and Lee, R. T. 2016. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ. Res. 118, 1125-1141. https://doi.org/10.1161/CIRCRESAHA.116.308391
  44. Walker, R. G., Czepnik, M., Goebel, E. J., McCoy, J. C., Vujic, A., Cho, M., Oh, J., Aykul, S., Walton, K. L., Schang, G., Bernard, D. J., Hinck, A. P., Harrison, C. A., Martinez-Hackert, E., Wagers, A. J., Lee, R. T. and Thompson, T. B. 2017. Structural basis for potency differences between GDF8 and GDF11. BMC Biol. 15, 19. https://doi.org/10.1186/s12915-017-0350-1
  45. Warren, S., Chute, R. N. and Porter, M. W. 1975. The effect of parabiosis on life-span of rats stressed by radiation. J. Gerontol. 30, 15-21. https://doi.org/10.1093/geronj/30.1.15
  46. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. and Campbell, K. H. S. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813. https://doi.org/10.1038/385810a0
  47. World Health Statistics 2016: Monitoring health for the SDGs, WHO.
  48. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432. https://doi.org/10.1038/372425a0