References
- Abe, S., Rhee, S., Iwanuma, O., Hiroki, E., Yanagisawa, N., Sakiyama, K. and Ide, Y. 2009. Effect of mechanical stretching on expressions of muscle specific transcription factors MyoD, Myf-5, myogenin and MRF4 in proliferated myoblasts. Anat. Histol. Embryol. 38, 305-310. https://doi.org/10.1111/j.1439-0264.2009.00945.x
- Attaix, D., Combaret, L., Bechet, D. and Taillandier, D. 2008. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr. Opin. Support. Palliat. Care 2, 262-266. https://doi.org/10.1097/SPC.0b013e3283196ac2
- Bhatnagar, S., Mittal, A., Gupta, S. K. and Kumar, A. 2012. TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J. Cell. Physiol. 227, 1042-1051. https://doi.org/10.1002/jcp.22821
- Bodine, S. C. and Baehr, L. M. 2014. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469-484. https://doi.org/10.1152/ajpendo.00204.2014
- Chaudhary, P., Suryakumar, G., Prasad, R., Singh, S. N., Ali, S. and Ilavazhagan, G. 2012. Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains. Mol. Cell. Biochem. 364, 101-113. https://doi.org/10.1007/s11010-011-1210-x
- Du, J., Mitch, W. E., Wang, X. and Price, S. R. 2000. Glucocorticoids induce proteasome C3 subunit expression in L6 muscle cells by opposing the suppression of its transcription by NF-kappa B. J. Biol. Chem. 275, 19661-19666. https://doi.org/10.1074/jbc.M907258199
- Evenson, A. R., Fareed, M. U., Menconi, M. J., Mitchell, J. C. and Hasselgren, P. O. 2005. GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes. Int. J. Biochem. Cell. Biol. 37, 2226-2238. https://doi.org/10.1016/j.biocel.2005.06.002
- Foletta, V. C., White, L. J., Larsen, A. E., Leger, B. and Russell, A. P. 2011. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 461, 325-335. https://doi.org/10.1007/s00424-010-0919-9
- Gomes-Marcondes, M. C. and Tisdale, M. J. 2002. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett. 180, 69-74. https://doi.org/10.1016/S0304-3835(02)00006-X
- Hyatt, J. P., Roy, R. R., Baldwin, K. M. and Edgerton, V. R. 2003. Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am. J. Physiol. Cell. Physiol. 285, C1161-1173. https://doi.org/10.1152/ajpcell.00128.2003
- Jagoe, R. T. and Goldberg, A. L. 2001. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr. Opin. Clin. Nutr. Metab. Care 4, 183-190. https://doi.org/10.1097/00075197-200105000-00003
- Jesinkey, S. R., Korrapati, M. C., Rasbach, K. A., Beeson, C. C. and Schnellmann, R. G. 2014. Atomoxetine prevents dexamethasone-induced skeletal muscle atrophy in mice. J. Pharmacol. Exp. Ther. 351, 663-673. https://doi.org/10.1124/jpet.114.217380
- Kandarian, S. C. and Jackman, R. W. 2006. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33, 155-165. https://doi.org/10.1002/mus.20442
- Kiess, M., Gill, R. M. and Hamel, P. A. 1995. Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene 10. 159-166.
- Ko, J. A., Kimura, Y., Matsuura, K., Yamamoto, H., Gondo, T. and Inui, M. 2006. PDZRN3 (LNX3, SEMCAP3) is required for the differentiation of C2C12 myoblasts into myotubes. J. Cell. Sci. 119, 5106-5113. https://doi.org/10.1242/jcs.03290
- Laviano, A., Meguid, M. M., Preziosa, I. and Rossi Fanelli, F. 2007. Oxidative stress and wasting in cancer. Curr. Opin. Clin. Nutr. Metab. Care 10, 449-456. https://doi.org/10.1097/MCO.0b013e328122db94
- Lawler, J. M., Song, W. and Demaree, S. R. 2003. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic. Biol. Med. 35, 9-16. https://doi.org/10.1016/S0891-5849(03)00186-2
- Li, X., Moody, M. R., Engel, D., Walker, S., Clubb, F. J. Jr., Sivasubramanian, N., Mann, D. L. and Reid, M. B. 2000. Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102, 1690-1696. https://doi.org/10.1161/01.CIR.102.14.1690
- Li, Y. P., Chen, Y., Li, A. S. and Reid, M. B. 2003. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am. J. Physiol. Cell. Physiol. 285, C806-812. https://doi.org/10.1152/ajpcell.00129.2003
- Marinovic, A. C., Zheng, B., Mitch, W. E. and Price, S. R. 2007. Tissue-specific regulation of ubiquitin (UbC) transcription by glucocorticoids: in vivo and in vitro analyses. Am. J. Physiol. Renal. Physiol. 292, F660-666. https://doi.org/10.1152/ajprenal.00178.2006
- Mastrocola, R., Reffo, P., Penna, F., Tomasinelli, C. E., Boccuzzi, G., Baccino, F. M., Aragno, M. and Costelli, P. 2008. Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress. Free Radic. Biol. Med. 44, 584-593. https://doi.org/10.1016/j.freeradbiomed.2007.10.047
- Menconi, M., Gonnella, P., Petkova, V., Lecker, S. and Hasselgren, P. O. 2008. Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J. Cell. Biochem. 105, 353-364. https://doi.org/10.1002/jcb.21833
- Murton, A. J., Constantin, D. and Greenhaff, P. L. 2008. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim. Biophys. Acta 1782, 730-743. https://doi.org/10.1016/j.bbadis.2008.10.011
- Otis, J. S., Ashikhmin, Y. I., Brown, L. A. and Guidot, D. M. 2008. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats. AIDS Res. Ther. 5, 8. https://doi.org/10.1186/1742-6405-5-8
- Passmore, L. A. and Barford, D. 2004. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379, 513-525. https://doi.org/10.1042/bj20040198
- Pickart, C. M. and Eddins, M. J. 2004. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55-72. https://doi.org/10.1016/j.bbamcr.2004.09.019
- Qin, J., Du, R., Yang, Y. Q., Zhang, H. Q., Li, Q., Liu, L., Guan, H., Hou, J. and An, X. R. 2013. Dexamethasone-induced skeletal muscle atrophy was associated with upregulation of myostatin promoter activity. Res. Vet. Sci. 94, 84-89. https://doi.org/10.1016/j.rvsc.2012.07.018
- Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D. and Glass, D. J. 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14, 395-403. https://doi.org/10.1016/S1097-2765(04)00211-4
- Talarmin, H., Derbre, F., Lefeuvre-Orfila, L., Leon, K., Droguet, M., Pennec, J. P. and Giroux-Metges, M. A. 2017. The diaphragm is better protected from oxidative stress than hindlimb skeletal muscle during CLP-induced sepsis. Redox Rep. 22, 218-226. https://doi.org/10.1080/13510002.2016.1223793
- Tintignac, L. A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M. P. and Leibovitch, S. A. 2005. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J. Biol. Chem. 280, 2847-2856. https://doi.org/10.1074/jbc.M411346200
- Wing, S. S. 2005. Control of ubiquitination in skeletal muscle wasting. Int. J. Biochem. Cell. Biol. 37, 2075-2087. https://doi.org/10.1016/j.biocel.2004.11.011
- Yamamoto, D., Ikeshita, N., Matsubara, T., Tasaki, H., Herningtyas, E. H., Toda, K., Iida, K., Takahashi, Y., Kaji, H., Chihara, K. and Okimura, Y. 2008. GHRP-2, a GHS-R agonist, directly acts on myocytes to attenuate the dexamethasone-induced expressions of muscle-specific ubiquitin ligases, Atrogin-1 and MuRF1. Life Sci. 82, 460-466. https://doi.org/10.1016/j.lfs.2007.11.019