DOI QR코드

DOI QR Code

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection

미세주입을 이용한 난자로의 분리된 미토콘드리아 전달

  • Baek, Sang-Ki (Department of Animal Bioscience and Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Byun, June-Ho (Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University) ;
  • Kim, Bo Gyu (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Lee, A ram (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Cho, Young-Soo (Department of Animal Bioscience and Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kim, Ik-Sung (Department of Animal Bioscience and Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Seo, Gang-Mi (Department of Animal Bioscience and Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Chung, Se-Kyo (Department of Control and Instrumentation Engineering, Gyeongsang National University) ;
  • Lee, Joon-Hee (Department of Animal Bioscience and Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Woo, Dong Kyun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
  • Received : 2017.10.20
  • Accepted : 2017.11.09
  • Published : 2017.12.30

Abstract

Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.

미토콘드리아는 산화적 인산화와 연결된 전자전달을 통하여 에너지 생산에 중추적인 역할을 갖는다. 이 외에도 미토콘드리아는 신진대사, 세포자멸, 신호전달 그리고 활성산소 생성 등의 다양한 기능을 수행한다. 따라서, 미토콘드리아의 기능장애는 여러 인체질환에 영향을 준다는 것이 명백하다. 또한, 미토콘드리아 DNA의 돌연변이는 에너지 신진대사에 결함이 있는 여러 유전성 질환의 원인을 제공한다. 불행하게도 아직 이러한 유전성 미토콘드리아 DNA 질환의 치료법은 전무한 상태이다. 이러한 관점에서, 결함 미토콘드리아를 정상 미토콘드리아로 치환하는 최근의 시도는 큰 주목을 받고 있다. 본 연구에서는 녹색형광단백질로 표지된 미토콘드리아를 원심분리에 기반하여 생화학적으로 분리하고, 분리된 미토콘드리아를 동물복제에 쓰이는 미세주입 기법으로 소 난자에 전달 하였다. 이러한 미토콘드리아가 미세주입된 난자에서 단위발생을 유도하여 배반포 단계까지의 초기 발생과정에서 미토콘드리아 미세주입의 영향을 분석하였다. 미토콘드리아에 표지된 녹색형광단백질을 형광현미경으로 분석함으로써 미세주입으로 난자에 전달된 미토콘드리아는 빠르게 세포질에서 분산되고, 이 후 발생되는 딸세포에게 전달됨이 확인되었다. 따라서, 본 연구에서 수행된, 미세주입을 이용한 미토콘드리아의 전달은 최근 활발히 연구되는 미토콘드리아 치환 기법, 유전성 미토콘드리아 DNA 질환 치료법 및 동물복제 등에 유용한 모델로의 기여가 기대된다.

Keywords

References

  1. Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M., Rehman, R., Tiwari, B. K., Jha, K. A., Barhanpurkar, A. P., Wani, M. R., Roy, S. S., Mabalirajan, U., Ghosh, B. and Agrawal, A. 2014. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994-1010.
  2. Bratic, A. and Larsson, N. G. 2013. The role of mitochondria in aging. J. Clin. Invest. 123, 951-957. https://doi.org/10.1172/JCI64125
  3. Clayton, D. A. and Shadel, G. S. 2014 Isolation of mitochondria from tissue culture cells. Cold Spring Harb. Protoc. 10, 1109-1111.
  4. Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., Murdoch, A. P., Chinnery, P. F., Taylor, R. W., Lightowlers, R. N., Herbert, M. and Turnbull, D. M. 2010. Pronuclear transfer in human embryos to prevents transmission of mitochondrial DNA disease. Nature 465, 82-85. https://doi.org/10.1038/nature08958
  5. Gogvadze, V., Orrenius, S. and Zhivotovsky, B. 2008. Mitochondria in cancer cells: what is so special about them? Trends Cell. Biol. 18, 165-173. https://doi.org/10.1016/j.tcb.2008.01.006
  6. Green, D. R. and Kroemer, G. 2004. The pathophysiology of mitochondrial cell death. Science 305, 626-629. https://doi.org/10.1126/science.1099320
  7. Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U. and Schumacker, P. T. 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401-408. https://doi.org/10.1016/j.cmet.2005.05.001
  8. Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X. and Lo, E. H. 2016. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551-555. https://doi.org/10.1038/nature18928
  9. Islam, M. N., Das, S. R., Emin, M. T., Wei, M., Sun, L., Westphalen, K., Rowlands, D. J., Quadri, S. K., Bhattacharya, S. and Bhattacharya, J. 2012. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759-765. https://doi.org/10.1038/nm.2736
  10. Jacobs, H. T. 2001. Making mitochondrial mutants. Trends Genet. 17, 653-660. https://doi.org/10.1016/S0168-9525(01)02480-5
  11. Klopstock, T., Klopstock, B. and Prokisch, H. 2016. Mitochondrial replacement approaches: challenges for clinical implementation. Genome Med. 8, 126. https://doi.org/10.1186/s13073-016-0380-2
  12. Kroemer, G. and Pouyssegur, J. 2008. Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005
  13. Mishra, P. and Chan, D. C. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634-646. https://doi.org/10.1038/nrm3877
  14. Orrenius, S., Gogvadze, V. and Zhivotovsky, B. 2007. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143-183. https://doi.org/10.1146/annurev.pharmtox.47.120505.105122
  15. Park, C. B. and Larsson, N. G. 2011. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809-818. https://doi.org/10.1083/jcb.201010024
  16. Park, S. J., Shin, J. H., Kim, E. S., Jo, Y. K., Kim, J. H., Hwang, J. J., Kim, J. C. and Cho, D. H. 2012. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. FEBS Lett. 586, 4303-4310. https://doi.org/10.1016/j.febslet.2012.10.035
  17. Reznichenko, A. S., Huyser, C. and Pepper, M. S. 2016. Mitochondrial transfer: Implications for assisted reproductive technologies. Appl. Transl. Genom. 11, 40-47. https://doi.org/10.1016/j.atg.2016.10.001
  18. Sebastian, D., Palacin, M. and Zorzano, A. 2017 Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging. Trends Mol. Med. 23, 201-215. https://doi.org/10.1016/j.molmed.2017.01.003
  19. Shadel, G. S. and Horvath, T. L. 2015. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560-569. https://doi.org/10.1016/j.cell.2015.10.001
  20. Stewart, J. B. and Chinnery, P. F. 2015. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Genet. 16, 530-542. https://doi.org/10.1038/nrg3966
  21. Wallace, D. C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407. https://doi.org/10.1146/annurev.genet.39.110304.095751
  22. Wallace, D. C. 2013. A mitochondrial bioenergetic etiology of disease. J. Clin. Invest. 123, 1405-1412. https://doi.org/10.1172/JCI61398
  23. West, A. P. and Shadel, G. S. 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363-375. https://doi.org/10.1038/nri.2017.21