References
- Arsenis, C. and Touster, O. 1969. Nicotinamide adenine dinucleotide phosphate-linked xylitol dehydrogenase in guinea pig liver cytosol. J. Biol. Chem. 244, 3895-3899.
- Batt, C. A., Caryallo, S., Easson, D. D., Akedo, M. and Sinskey, A. J. 1986. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 28, 549-553. https://doi.org/10.1002/bit.260280411
- Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Deng, X. X. and Ho, N. W. 1990. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl. Biochem. Biotechnol. 24/25, 193-199. https://doi.org/10.1007/BF02920245
- Eliasson, A., Christensson, C., Wahlbom, C. F. and Hahn-Hagerdal, B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66, 3381-3386. https://doi.org/10.1128/AEM.66.8.3381-3386.2000
- Gietz R. D. and Schiestl, R. H. 1995. Transforming yeast with DNA. Methods Mol. Cell. Biol. 5, 225-269.
- Hahn-Hägerdahl, B., Jeppson, H., Skoog, K. and Prior, B. A. 1994. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Technol. 16, 933-943. https://doi.org/10.1016/0141-0229(94)90002-7
- Hou, J., Shen, Y., Li, X. P. and Bao, X. M. 2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 45, 184-189. https://doi.org/10.1111/j.1472-765X.2007.02165.x
- Hummon, A. B., Lim, S. R., Difilippantonio, M. J. and Ried, T. 2007. Isolation and solubilization of proteins after TRIZOL extraction of RNA and DNA from patient material following prolonged storage. BioTechniques 42, 467-472. https://doi.org/10.2144/000112401
- Kim, M. J., Kim, B. H., Nam, S. W., Choi, E. S., Shin, D. H., Cho, H. Y., Son, K. H., Park, H. Y. and Kim, Y. H. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae. J. Life Sci. 23, 863-868. https://doi.org/10.5352/JLS.2013.23.7.863
-
Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimization for production of exo-
${\beta}$ -1,3-glucanase (laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 26, 427-432. - Kim, S. R., Ha, S. J., Kong, I. I. and Jin, Y. S. 2012. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 14, 336-343. https://doi.org/10.1016/j.ymben.2012.04.001
- Kim, S. R., Kwee, N. R., Kim, H. J. and Jin, Y. S. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13, 312-321. https://doi.org/10.1111/1567-1364.12036
- Kim, Y. H., Ishikawa, D., Ho, P. H., Sugiyama, M., Kaneko, Y. and Haraghima, S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic. Acids Res. 34, 2914-2924. https://doi.org/10.1093/nar/gkl293
- Kotter, P. and Ciriacy, M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776-783. https://doi.org/10.1007/BF00167144
- Latchinian-Sadek, L. and Thomas, D. Y. 1993. Expression, purification, and characterization of the yeast KEX1 gene product, a polypeptide precursor processing carboxypeptidase. J. Biol. Chem. 268, 534-540.
- Lim, M. Y., Lee, J. W., Lee, J. H., Kim, Y. H., Seo, J. H. and Nam, S. W. 2007. Secretory overexpression of clostridium endoglucanase A in Saccharomyces cerevisiae using GAL10 promoter and exoinulinase signal sequence. J. Life Sci. 17, 1248-1254. https://doi.org/10.5352/JLS.2007.17.9.1248
- Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O. and Sawayama, S. 2008. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 281, 243-255.
- Nordling, E., Jornvall, H. and Persson, B. 2002. Mediumchain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur. J. Biochem. 269, 4267-4276. https://doi.org/10.1046/j.1432-1033.2002.03114.x
- Richard, P., Toivari, M. H. and Penttila, M. 1999. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett. 457, 135-138. https://doi.org/10.1016/S0014-5793(99)01016-9
- Riveros-Rosas, H., Julian-Sanchez, A., Villalobos-Molina, R., Pardo, J. P. and Pina, E.2003. Diversity, taxonomy and evo lution of medium-chain dehydrogenase/reductase superfamily. Eur. J. Biochem. 270, 3309-3334. https://doi.org/10.1046/j.1432-1033.2003.03704.x
- Rodriguez-Pena, J. M., Cid, V. J., Arroyo, J. and Nombela, C. 1998. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162, 155-160. https://doi.org/10.1111/j.1574-6968.1998.tb12993.x
- van Zyl, C., Prior, B. A., Kilian, S. G. and Brandt, E. V. 1993. Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59, 1487-1494.
- van Zyl, C., Prior, B. A., Kilian, S. G. and Kock, J. L. 1989. D-xylose utilization by Saccharomyces cerevisiae. J. Gen. Microbiol. 135, 2791-2798.
- Vernet, T., Dignard, D. and Thomas, D. Y. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52, 225-233. https://doi.org/10.1016/0378-1119(87)90049-7
- Zhang, J., Tian, S., Zhang, Y. and Yang, X. 2008. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Appl. Biochem. Biotechnol. 150, 185-192. https://doi.org/10.1007/s12010-008-8203-6