DOI QR코드

DOI QR Code

Genomic analysis of WCP30 Phage of Weissella cibaria for Dairy Fermented Foods

  • Lee, Young-Duck (Department of Food Science and Engineering, Seowon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University)
  • Received : 2017.10.29
  • Accepted : 2017.11.21
  • Published : 2017.12.31

Abstract

In this study, we report the morphogenetic analysis and genome sequence of a new WCP30 phage of Weissella cibaria, isolated from a fermented food. Based on its morphology, as observed by transmission electron microscopy, WCP30 phage belongs to the family Siphoviridae. Genomic analysis of WCP30 phage showed that it had a 33,697-bp double-stranded DNA genome with 41.2% G+C content. Bioinformatics analysis of the genome revealed 35 open reading frames. A BLASTN search showed that WCP30 phage had low sequence similarity compared to other phages infecting lactic acid bacteria. This is the first report of the morphological features and complete genome sequence of WCP30 phage, which may be useful for controlling the fermentation of dairy foods.

Keywords

References

  1. Ackermann, H. W. (2003) Bacteriophage observations and evolution. Res. Microbiol. 154, 245-251. https://doi.org/10.1016/S0923-2508(03)00067-6
  2. Bjorkroth, J. A., Dicks, L. M. T. D., and Endo, A. (2014) "The genus Weissella," In Lactic Acid Bacteria, Biodiversity and Taxonomy, eds Holzapfel, W. H. and Wood, B. J. B. (Chi chester: WileyBlackwell), 418-428.
  3. Buckenhüskes, H. J. (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol. Rev. 12, 253-271. https://doi.org/10.1111/j.1574-6976.1993.tb00022.x
  4. Carr, F. J., Chill, D., and Maida, N. (2002) The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol. 28, 281-370. https://doi.org/10.1080/1040-840291046759
  5. Collins, M. D., Samelis, J., Metaxopoulos, J., and Wallbanks, S. (1993) Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75, 595-603. https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
  6. Fessard, A. and Remize, F. (2017) Why are Weissella spp. not used as commercial starter cultures for food fermentation? Fermentation 3, 1-31.
  7. Foster, J. W., Park, Y. K., Penfound, T., Fenger, T., and Spector, M. P. (1990) Regulation of NAD metabolism in Salmonella typhimurium: molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J. Bacteriol. 172, 4187-4196. https://doi.org/10.1128/jb.172.8.4187-4196.1990
  8. Fusco, V., Quero, G. M., Cho, G. S., Kabisch, J., Meske, D., Neve, H., Bockelmann, W., and Franz, C. M. A. P. (2015) The genus Weissella: Taxonomy, ecology and biotechnological potential. Front. Microbiol. 6, 1-22.
  9. Garneau, J. E. and Moineau, S. (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb. Cell Fact. 10, 1-10. https://doi.org/10.1186/1475-2859-10-1
  10. Greer, G. G. (2005) Bacteriophage control of foodborne bacteria. J. Food Prot. 68, 1102-1111. https://doi.org/10.4315/0362-028X-68.5.1102
  11. Hendrix, R. W. (2003) Bacteriophage genomics. Curr. Opin. Microbiol 6, 506-511. https://doi.org/10.1016/j.mib.2003.09.004
  12. Grundling, A., Manson, M. D., and Young, R. (2001) Holins kill without warning. PNAS 98, 9348-9352. https://doi.org/10.1073/pnas.151247598
  13. Hudson, J. A., Billington, C., Carey-Smith, G., and Greening, G. (2005) Bacteriophages as biocontrol agents in food. J. FoodProt. 68, 426-437.
  14. Katsura I. and Hendrix R. W. (1984) Length determination in bacteriophage lambda tails. Cell 39, 691-698. https://doi.org/10.1016/0092-8674(84)90476-8
  15. Kot, W., Neve, H., Heller, K. J., and Vogensen, F. K. (2014) Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Front. Microbiol. 28, 1-9.
  16. Liu, M., Bischoff, K. M., Gill, J. J., Mire-Criscione, M. D., Berry, J. D., Young, R., and Summer, E. J. (2015) Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol. Biofuels 4, 1-13.
  17. Manfioletti, G. and Schneider, C. (1988) A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic. Acids Res. 16, 2873-2884. https://doi.org/10.1093/nar/16.7.2873
  18. Martinez B, Obeso J. M., Rodriguez, A., and Garcia, P. (2008) Nisin-bacteriohage crossresistance in Staphylococcus aureus. Int. J. Food Microbiol. 122, 253-258. https://doi.org/10.1016/j.ijfoodmicro.2008.01.011
  19. Modi, R., Hirvi, Y., Hill, A., and Griffiths, M. W. (2001) Effect of phage on survival of Salmonella enteritidis during manufacture and storage of Cheddar cheese made from raw and pasteurized milk. J. Food Prot. 64, 927-933. https://doi.org/10.4315/0362-028X-64.7.927
  20. Moore, S. D. and Prevelige, P. E. (2002) DNA packaging: A new class of molecular motors. Curr. Biol. 12, R96-R98. https://doi.org/10.1016/S0960-9822(02)00670-X
  21. Ross, P. R., Morgan, S., and Hill, C. (2002) Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 79, 3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
  22. Sambrook, J. and Russel, D. W. (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  23. Sulakvelidze, A., Alavidze, Z., and Morris, J. G. (2001) Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649-659. https://doi.org/10.1128/AAC.45.3.649-659.2001
  24. Tamang, J. P., Watanabe, K., and Holzapfel, W. H. (2016) Review: Diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7, 377.