DOI QR코드

DOI QR Code

Theoretical Approach of the Quartz Dissolution Rate under Various Temperature, pH and Applied Stress Conditions

다양한 온도, pH, 압력 조건하에서의 석영용해속도에 대한 이론적 접근

  • Choi, Junghae (Department of Earthscience Education, Kyungpook National University)
  • 최정해 (경북대학교 지구과학교육과)
  • Received : 2017.12.13
  • Accepted : 2017.12.22
  • Published : 2017.12.28

Abstract

Quartz is the most abundant mineral in the Earth's continental crust. Therefore, understanding of quartz dissolution and precipitation is very important to know about weathering processes and interactions between rocks and water in hydrothermal and metamorphic environments. This paper presents a basic review on the research about quartz dissolution mechanism under various physico-chemical conditions. We rearranged the relationship between each physico-chemical factor and dissolution mechanism from the results of previous researchers in this paper. From this result, we understood that quartz dissolution and precipitation are affected by each factor such as temperature, pH, and applied stress conditions at contact point. In particular, we recognized that the high pH and temperature conditions have different anion concentrations on mineral's surface. As a result, high pH and temperature conditions have a better effect than applied stress condition to the quartz dissolution mechanism.

일반적으로 석영은 지각을 구성하는 광물 가운데 가장 많은 부분을 차지하고 있으며, 이러한 석영의 용해와 침전에 대한 이해는 암석의 풍화 매커니즘과 열수작용 및 변성환경에서의 암석과 물의 관계를 규명하는데 매우 중요한 역할을 한다. 본 논문에서는 석영의 용해와 침전에 영향을 미치는 다양한 물리화학적 환경을 수식을 이용해 재정리하였으며, 이전의 연구자들이 발표한 연구결과를 바탕으로 물리화학적 조건하에서의 석영 용해에 대해 이론적 접근을 실시하였다. 본 논문을 통해서 석영의 용해 및 침전이 다양한 환경에 영향을 받으며, 특히 이론적 접근을 통해서 석영에 작용된 압력보다는 주변의 pH 및 온도 조건에 더 큰 영향을 받는다는 것을 확인하였다.

Keywords

References

  1. Benjamin, M.M. (2002) Water Chemistry. McGraw-Hill, New York, 668p.
  2. Berger, G., Cadore, E., Schott, J. and Dove, P.M. (1994) Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and $300^{\circ}C$: Effect of the nature of surface complexes and reaction affinity. Geochimica et Cosmochimica Acta, v.58, p.541-551. https://doi.org/10.1016/0016-7037(94)90487-1
  3. Brady, P.V. and Walther, J.V. (1989) Controls on silicate dissolution rates in neutral and basic pH solutions at $25^{\circ}C$. Geochimica et Cosmochimica Acta, v.53, p.2823-2830. https://doi.org/10.1016/0016-7037(89)90160-9
  4. Brady, P.V. and Walther, J.V. (1990) Kinetics of quartz dissolution at low temperatures. Chemical Geology, v.82, p.253-264. https://doi.org/10.1016/0009-2541(90)90084-K
  5. Broekmans, M.A.T.M. (1999) Classification of the alkalisilica reaction in geochemical terms of silica dissolution. In: Pietersen, H.S., Larbi, J.A. and Janssen, H.H.A. (eds.), Proceedings of the 7th Euroseminar on Microscopy Applied on Building Materials, Delft, p.155-170.
  6. Dove, P.M. (1994) The dissolution kinetics of quartz in sodium chloride solutions at $25^{\circ}C$ to $300^{\circ}C$. American Journal of Science, v.294, p.665-712. https://doi.org/10.2475/ajs.294.6.665
  7. Ganor, J. and Lasaga, A.C. (1998) Simple mechanistic models for inhibition of a dissolution reaction. Geochimica et Cosmochimica Acta, v.62, p.1295-1306. https://doi.org/10.1016/S0016-7037(98)00036-2
  8. Knauss, K.G. and Wolery, T.J. (1998) The dissolution kinetics of quartz as a function of pH and time at $70^{\circ}C$. Geochimica et Cosmochimica Acta, v.52, p.43-53.
  9. Lasaga, A.C. (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton, 817p.
  10. Renard, F., Ortoleva, P. and Gratier, J.P. (1997) Pressure solution in sandstones: influence of clays and dependence on temperature and stress. Tectonophysics, v.280, p.257-266. https://doi.org/10.1016/S0040-1951(97)00039-5
  11. Rimstidt, J.D. and Barnes, H.L. (1980) The kinetics of silica- water reactions. Geochimica et Cosmochimica Acta, v.44, p.1683-1699. https://doi.org/10.1016/0016-7037(80)90220-3
  12. Rouquerol, F., Rouquerol, J. and Sing, K. (1999) Adsorption by powders and porous solids. Wiley-VCH, Waltham, 467p.
  13. Schwartzentruber, J., Fürst, W. and Renon, H. (1987) Dissolution of quartz into dilute alkaline solutions at $90^{\circ}C$: A kinetic study. Geochimica et Cosmochimica Acta, v.51, p.1867-1874. https://doi.org/10.1016/0016-7037(87)90177-3
  14. Sips, R. (1948) On the structure of a catalyst surface. The Journal of Chemical Physics, v.16, p.490-495. https://doi.org/10.1063/1.1746922
  15. Stumm,W. and Morgan, J.J. (1996) Aquatic chemistry; Chemical equilibria and rates in natural waters. John Wiley & Sons. Inc., Hoboken, 1040p.
  16. Xiao, Y. and Lasaga, A.C. (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH- catalysis. Geochimica et Cosmochimica Acta, v.60, p.2283-2295. https://doi.org/10.1016/0016-7037(96)00101-9