DOI QR코드

DOI QR Code

Ore Mineralization of The Copper-bearing Hanae Hydrothermal Vein Deposit

하내 함 동 열수 맥상광상의 광화작용

  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Lee, Sunjin (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Jun, Youngshik (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 최상훈 (충북대학교 지구환경과학과) ;
  • 이선진 (충북대학교 지구환경과학과) ;
  • 전영식 (충북대학교 지구환경과학과)
  • Received : 2017.12.18
  • Accepted : 2017.12.26
  • Published : 2017.12.28

Abstract

The Hanae deposit is located within the Cretaceous Gyeongsang Basin. The Cu-bearing hydrothermal quartz vein formed by narrow open-space filling along fracture in the sedimentary rocks as Jindong Formation. The Hanae Cu-bearing hydrothermal deposit shows a paragenetic sequence of pyrrhotite-pyrite $\rightarrow$ pyrite-chalcopyrite-sphalerite(${\pm}$Bi-bearing tellurides) $\rightarrow$ Ag-bearing telluride mineralization $\rightarrow$ secondary mineralization. Fluid inclusion data indicate that the Hanae Cu-bearing hydrothermal mineralization occurred from dominantly aqueous fluids at temperatures of $400^{\circ}C-200^{\circ}C$. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages combined with fluid inclusion data indicate that early main Cu-bearing ore mineralization in the vein starts at about $350^{\circ}C$ which corresponds to sulfur fugacity from about $10^{-9.2}$ to $10^{-8.7}bar$ with oxygen fugacity of about $10^{-32.1}$ to $10^{-29.8}bar$. Late main Cu-bearing ore mineralization in the vein occurs at about $250^{\circ}C$ which corresponds to sulfur fugacity from about $10^{-13.5}$ to $10^{-11.7}bar$ with oxygen fugacity of about $10^{-38.4}$ to $10^{-35.2}bar$. The late Ag-bearing telluride mineralization in the Hanae hydrothermal system occurs at about $200^{\circ}C$ which corresponds to minium Tellirium fugacity value of about $10^{-18}bar$ with sulfur fugacity of about $10^{-14.0}$ to $10^{-10.9}bar$.

하내광상은 경상계 하양층군의 진동층 퇴적암내의 열극을 충진하여 발달한 함 동 열수 석영 맥상광상이다. 초기 맥상 석영과 함께 자류철석-황철석의 산출로 시작된 금속 광화작용은 자류철석-황철석 $\rightarrow$ 황철석-황동석-섬아연석(${\pm}$함비스무스 텔루라이드) 광화작용 $\rightarrow$ 함 은(Ag) 텔루라이드 광화작용 $\rightarrow$ 2차 광물 광화작용의 공생관계를 보이며 진행되었다. 유체포유물 가열실험 결과 하내 함 동 열수광화작용은 약 $400^{\circ}C$ 내지 $200^{\circ}C$ 온도조건의 열수계에서 진행되었다. 맥상 광물의 생성조합과 공생관계 및 유체포유물 가열실험 결과를 이용한 열역학적 해석결과, 하내 함 동 열수광체의 주된 함 동 광물인 황동석 주 광화시기 초기의 온도인 $350^{\circ}C$의 경우 $10^{-9.2}bar$의 황 분압조건에서 광화작용이 시작되었으며, $10^{-8.7}bar$에 이르는 황 분압조건과 ${\approx}10^{-32.1}bar$에서 ${\approx}10^{-29.8}bar$에 이르는 산소 분압조건에서 진행되었다. 주 광화시기 후기의 온도조건인 $250^{\circ}C$의 경우 ${\approx}10^{-13.5}bar$에서 ${\approx}10^{-13.2}bar$에 이르는 황 분압조건과 ${\approx}10^{-38.4}bar$에서 ${\approx}10^{-37.6}bar$에 이르는 산소 분압조건에서 시작되어 ${\approx}10^{-11.7}bar$${\approx}10^{-35.2}bar$에 이르는 황 분압 및 산소 분압 각각의 점증에 의하여 진행되었다. 하내 열수계 최후기(${\geq}200^{\circ}C$) 텔루라이드 광화작용과 관련된 Te의 최소 분압조건은 ${\approx}10^{-18}bar$이며, 황 분압 조건은 ${\approx}10^{-14.0}bar$ 에서 ${\approx}10^{-10.9}bar$이었다.

Keywords

References

  1. Afifi, A.M., Kelly, W.C. and Essene, E.J. (1988a) Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated Equilibria. Econ. Geol., v.83, p.377-394. https://doi.org/10.2113/gsecongeo.83.2.377
  2. Afifi, A.M., Kelly, W.C. and Essene, E.J. (1988b) Phase relations among tellurides, sulfides, and oxides: II. Applications to telluride-bearing ore deposits. Econ. Geol., v.83, p.395-404. https://doi.org/10.2113/gsecongeo.83.2.395
  3. Barton, P.B. Jr. and Toulmin, P. III (1964) The electrumtarnish method for the determination of the fugacity of sulfur in laboratory sulfides system. Geochim. Cosmochim. Acta, v.28, p.619-640. https://doi.org/10.1016/0016-7037(64)90082-1
  4. Choi, S.H. (2007) Geochemical evolution of hydrothermal fluids related to polymetallic mineralization in the Gyeongnam mineralized district, Korea. N. Jb. Miner. Abh., v.183, p.149-163. https://doi.org/10.1127/0077-7757/2007/0065
  5. Choi, S.H., So, C.S., Kweon, S.H. and Choi, K.J. (1994) The geochemistry of copper-bearing hydrothermal vein deposits in Goseong mining district (Samsan area), Gyeongsang basin, Korea. Econ. Environ. Geol. v.27, p.147-160.
  6. Choi, S.H., So, C.S., Youm, S.J. and Shelton, K.L. (1998) Geochemistry and genesis of hydrothermal Cu deposits in the Gyeongsang Basin, Korea: Masan mineralized area. N.Jb.Miner. Anh., v.173, p.189-206.
  7. Hegelson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. Jour. Sci. v.26, p.729-804.
  8. Jin, M.S., Lee, S.M., Lee, J.S. and Kim, S.J. (1982) Lithochemistry of the Cretaceous granitoids with relation to the metallic ore deposits in Southern Korea. Jour. Geol. Soc. Korea , v.18, p.119-131.
  9. Kim, O.J. and Kim, K.H. (1974) A study on Red Hill copper deposits of the Dongjom Mine. Mining Geol., v.7, p.157-174.
  10. Lee, S.M. (1972) Granites and mineralization in Gyeongsang basin. Memoirs in cerebration of 60th birthday of Prof. C. M. Son, Coll. Liberal Art Sci., Seoul, Seoul Nat. Univ., p.195-219.
  11. Lee, H.K., Moon, H.S. and Oh, M.S. (2007) Economic mineral deposits in Korea. Acanet, 762p.
  12. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  13. Sillitoe, R. H. (1980) Evidence for porphyry-type mineralization in south Korea. Mining Geol. Spec. Iss., v.8, p.205-214.
  14. Shikazono, N. (1985) A comparison of temperatures estimated from the electrum-sphalerite-pyrite-gentite assemblage and filling temperatures of fluid inclusions from epithermal Au-Ag vein-type deposits in Japan. v.80, p.1454-1424.