References
- T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges," Renew. Sustain. Energy Rev., vol. 70, pp. 1286-1297, Apr. 2017. https://doi.org/10.1016/j.rser.2016.12.028
- W. Wang et al., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Adv. Energy Mater., vol. 4, no. 7, p. 1301465, 2014. https://doi.org/10.1002/aenm.201301465
-
J. Kim and B. Shin, "Strategies to reduce the open-circuit voltage deficit in
$Cu_2ZnSn(S,Se)_4$ thin film solar cells," Electron. Mater. Lett., vol. 13, no. 5, pp. 373-392, Sep. 2017. https://doi.org/10.1007/s13391-017-7118-1 - C. Wadia, A. P. Alivisatos, and D. M. Kammen, "Materials availability expands the opportunity for large-scale photovoltaics deployment," Environ. Sci. Technol., vol. 43, no. 6, pp. 2072-2077, 2009. https://doi.org/10.1021/es8019534
- K. T. R. Reddy, N. K. Reddy, and R. W. Miles, "Photovoltaic Properties of SnS Based Solar Cells," Sol. Energy Mater. Sol. Cells, vol. 90, no. 18-19, pp. 3041-3046, 2006. https://doi.org/10.1016/j.solmat.2006.06.012
- A. Schneikart, H.-J. Schimper, A. Klein, and W. Jaegermann, "Efficiency limitations of thermally evaporated thin-film SnS solar cells," J. Phys. D. Appl. Phys., vol. 46, no. 30, p. 305109, 2013. https://doi.org/10.1088/0022-3727/46/30/305109
-
T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, and K. Higuchi, "SnS thin film solar cells with
$Zn_{1-x}Mg_xO$ buffer layers," Appl. Phys. Lett., vol. 102, no. 19, p. 193901, 2013. https://doi.org/10.1063/1.4804603 - P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, "Atomic layer deposition of tin monosulfide thin films," Adv. Energy Mater., vol. 1, no. 6, pp. 1116-1125, 2011. https://doi.org/10.1002/aenm.201100330
- P. Sinsermsuksakul et al., "Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer," Appl. Phys. Lett., vol. 102, no. 5, 2013.
- P. Sinsermsuksakul et al., "Overcoming Efficiency Limitations of SnS-Based Solar Cells," Adv. Energy Mater., vol. 4, no. 15, 2014.
- V. Steinmann et al., "3.88% Efficient Tin Sulfide Solar Cells Using Congruent Thermal Evaporation," Adv. Mater., vol. 26, no. 44, pp. 7488-7492, 2014. https://doi.org/10.1002/adma.201402219
- Y. Kawano, J. Chantana, and T. Minemoto, "Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance," Curr. Appl. Phys., vol. 15, no. 8, pp. 897-901, 2015. https://doi.org/10.1016/j.cap.2015.03.026
- V. R. Minnam Reddy, S. Gedi, C. Park, R. W. Miles, and K. T. Ramakrishna Reddy, "Development of sulphurized SnS thin film solar cells," Curr. Appl. Phys., vol. 15, no. 5, pp. 588-598, May 2015. https://doi.org/10.1016/j.cap.2015.01.022
- J. yoon Kang, S. M. Kwon, S. H. Yang, J. H. Cha, J. A. Bae, and C. W. Jeon, "Control of the microstructure of SnS photovoltaic absorber using a seed layer and its impact on the solar cell performance," J. Alloys Compd., vol. 711, pp. 294-299, 2017. https://doi.org/10.1016/j.jallcom.2017.04.001
-
N. K. Reddy and K. T. R. Reddy, "SnS films for photovoltaic applications: Physical investigations on sprayed
$Sn_xS_y$ films," Phys. B Condens. Matter, vol. 368, no. 1-4, pp. 25-31, 2005. https://doi.org/10.1016/j.physb.2005.06.032 - P. D. Antunez, D. A. Torelli, F. Yang, F. A. Rabuffetti, N. S. Lewis, and R. L. Brutchey, "Low temperature solution-phase deposition of SnS thin films," Chem. Mater., vol. 26, no. 19, pp. 5444-5446, 2014. https://doi.org/10.1021/cm503124u
-
L. a Burton et al., "Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS,
$Sn_2S_3$ , and$SnS_2$ ," Chem. Mater., vol. 25, no. 24, pp. 4908-4916, 2013. https://doi.org/10.1021/cm403046m - M. Sugiyama, K. T. R. Reddy, N. Revathi, Y. Shimamoto, and Y. Murata, "Band offset of SnS solar cell structure measured by X-ray photoelectron spectroscopy," Thin Solid Films, vol. 519, no. 21, pp. 7429-7431, 2011. https://doi.org/10.1016/j.tsf.2010.12.133
- G. Ghosh, "The sb-se(antimony-selenium) system," J. Phase Equilibria, vol. 1 4, no. 6 , pp. 753-763, 1993. https://doi.org/10.1007/BF02667889
-
P. Xu, S. Chen, B. Huang, H. J. Xiang, X. G. Gong, and S. H. Wei, "Stability and electronic structure of
$Cu_2ZnSnS_4$ surfaces: First-principles study," Phys. Rev. B - Condens. Matter Mater. Phys., vol. 88, no. 4, pp. 1-8, 2013. - S. Messina, M. T. S. Nair, and P. K. Nair, "Antimony Selenide Absorber Thin Films in All-Chemically Deposited Solar Cells," J. Electrochem. Soc., vol. 156, no. 5, p. H327, 2009. https://doi.org/10.1149/1.3089358
-
M. Luo et al., "Thermal evaporation and characterization of superstrate
$CdS/Sb_2Se_3$ solar cells," Appl. Phys. Lett., vol. 104, no. 17, 2014. -
M. Leng et al., "Selenization of
$Sb_2Se_3$ absorber layer: An efficient step to improve device performance of CdS /$Sb_2Se_3$ solar cells Selenization of$Sb_2Se_3$ absorber layer : An efficient step to improve devi," vol. 83905, no. 2014, 2015. -
X. Liu et al., "Improving the performance of
$Sb_2Se_3$ thin film solar cells over 4% by controlled addition of oxygen during film deposition," Prog. Photovoltaics Res. Appl., vol. 23, no. 12, pp. 1828-1836, 2015. https://doi.org/10.1002/pip.2627 -
Y. Zhou et al., "Thin-film
$Sb_2Se_3$ photovoltaics with oriented one-dimensional ribbons and benign grain boundaries," Nat. Photonics, vol. 9, no. 6, pp. 409-415, 2015. https://doi.org/10.1038/nphoton.2015.78 -
Z. Li et al., "Efficiency enhancement of
$Sb_2Se_3$ thin-film solar cells by the co-evaporation of Se and$Sb_2Se_3$ ," Appl. Phys. Express, vol. 9, no. 5, p. 52302, 2016. https://doi.org/10.7567/APEX.9.052302 - Y. Li et al., "The effect of sodium on antimony selenide thin film solar cells," RSC Adv., vol. 6, no. 90, pp. 87288-87293, 2016. https://doi.org/10.1039/C6RA20690E
-
X. Wen et al., "Magnetron sputtered ZnO buffer layer for
$Sb_2Se_3$ thin film solar cells," Sol. Energy Mater. Sol. Cells, vol. 172, no. February, pp. 74-81, 2017. https://doi.org/10.1016/j.solmat.2017.07.014 -
Y. Zhou et al., "Buried homojunction in
$CdS/Sb_2Se_3$ thin film photovoltaics generated by interfacial diffusion," Appl. Phys. Lett., vol. 111, no. 1, 2017. -
X. Liu et al., "Enhanced
$Sb_2Se_3$ solar cell performance through theory-guided defect control," Prog. Photovoltaics Res. Appl., vol. 25, no. 10, pp. 861-870, 2017. https://doi.org/10.1002/pip.2900 -
C. Chen et al., "6.5% Certified Efficiency
$Sb_2Se_3$ Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer," ACS Energy Lett., vol. 2, no. 9, pp. 2125-2132, 2017. https://doi.org/10.1021/acsenergylett.7b00648 -
X. Liu et al., "Thermal Evaporation and Characterization of
$Sb_2Se_3$ Thin Film for Substrate$Sb_2Se_3$ /CdS Solar Cells," ACS Appl. Mater. Interfaces, vol. 6, no. 13, pp. 10687-10695, 2014. https://doi.org/10.1021/am502427s -
C. Yuan, L. Zhang, W. Liu, and C. Zhu, "Rapid thermal process to fabricate
$Sb_2Se_3$ thin film for solar cell application," Sol. Energy, vol. 137, pp. 256-260, 2016. https://doi.org/10.1016/j.solener.2016.08.020 -
G. X. Liang et al., "Facile preparation and enhanced photoelectrical performance of
$Sb_2Se_3$ nano-rods by magnetron sputtering deposition," Sol. Energy Mater. Sol. Cells, vol. 160, no. October 2016, pp. 257-262, 2017. https://doi.org/10.1016/j.solmat.2016.10.042 -
Z. Li et al., "
$Sb_2Se_3$ thin film solar cells in substrate configuration and the back contact selenization," Sol. Energy Mater. Sol. Cells, vol. 161, no. October 2016, pp. 190-196, 2017. https://doi.org/10.1016/j.solmat.2016.11.033 - Y. Zhou et al., "Solution-Processed Antimony Selenide Heterojunction Solar Cells," Adv. Energy Mater., vol. 4, no. 8, p. 1301846-n/a, 2014. https://doi.org/10.1002/aenm.201301846
-
K. Y. Rajpure and C. H. Bhosale, "Effect of Se source on properties of spray deposited
$Sb_2Se_3$ thin films," Mater. Chem. Phys., vol. 62, no. 2, pp. 169-174, 2000. https://doi.org/10.1016/S0254-0584(99)00173-X -
Y. Lai et al., "Preparation and characterization of
$Sb_2Se_3$ thin films by electrodeposition and annealing treatment," Appl. Surf. Sci., vol. 261, pp. 510-514, 2012. https://doi.org/10.1016/j.apsusc.2012.08.046 - Y. RodrRguez-Lazcano, Y. PeRa, M. T. S. Nair, and P. K. Nair, "Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments," Thin Solid Films, vol. 493, no. 1-2, pp. 77-82, 2005. https://doi.org/10.1016/j.tsf.2005.07.238
- K. Zeng, D.-J. Xue, and J. Tang, "Antimony selenide thin-film solar cells," Semicond. Sci. Technol., vol. 31, no. 6, p. 63001, 2016. https://doi.org/10.1088/0268-1242/31/6/063001