Kesterite 태양전지소자의 연구 현황과 향후 전망

  • 김주란 (이화여자대학교 물리학과 및 신재생 에너지연구센터 통합과정 대학원) ;
  • 조윌렴 (이화여자대학교 물리학과 및 신재생 에너지연구센터)
  • Published : 2017.12.31

Abstract

박막 태양전지 기술은 현재 가장 큰 시장점유율을 보이고 있는 결정질 Si 태양전지의 차세대 후보로서 큰 관심을 받고 있다. 결정질 Si 태양전지보다 높은 효율로서, 저가로 생산할 수 있는 수준을 목표로 하여 $Cu(In,Ga)Se_2$ (CIGS) 를 비롯한 다양한 종류의 박막 태양전지들이 개발되고 있는데, 이 글에서는 최근에 범용성 초저가 박막 태양전지로 각광을 받고 있는 kesterite 박막 태양전지에 대해서 살펴보기로 한다. 가장 많이 연구되는 kesterite구조의 $Cu_2ZnSn(S,Se)_4$ (CZT(S,Se)) 박막 태양전지는 차세대 태양전지의 유력 후보군인 화합물태양전지 중에서 CdTe와 CIGS 그리고 새롭게 떠오르고 있는 페로브스카이트 등에 비해 범용 무독성 원소를 광흡수층으로 사용한다는 장점을 가지고 있지만 아직까지는 이들보다 효율이 낮아 상용화하기에는 좀 더 시간이 필요할 것으로 판단된다. CZT(S,Se)계 박막 태양전지의 기본적인 물성, 공정, 분석법 등을 알아보고 고효율을 달성하는 방법에 대하여 제시하고자 한다. 공정에 대한 상세한 최근 동향과 설명은 최근 한국공업화학회 소식지에 실린 강진규 박사의 리뷰논문을 참고하였다.

Keywords

References

  1. J.-K. Kang, D.-H. Son, J.-H. Sim, D.-K. Hwang, S.-J. Sung, K.-J. Yang, D.-H. Kim, The Research Status and Prospects of CZT(S,Se) Solar Cells, KIC News 20 (2017) 13.
  2. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, Device Characteristics of CZT(S,Se) Thin-Film Solar Cells with 12.6% Efficiency, Adv. Energy Mater. 4 (2014) 1301465. https://doi.org/10.1002/aenm.201301465
  3. Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov. T. Gokmen, Y. Virgus, S. Guha, $Cu_2ZnSnSe_4$ Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length, Adv. Energy Mater. 5 (2015) 1401372. https://doi.org/10.1002/aenm.201401372
  4. T. Kato, N. Sakai, H. Sugimoto, Efficiency improvement of $Cu_2ZnSn(S,Se)_4$ submodule with graded bandgap and reduced backside ZnS segregation, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, (2014) 0844.
  5. S. Kim, K. Kim, H. Tampo, H. Shibata, S. Niki, The 6th World Conference on Photovoltaic Energy Conversion, Kyoto International Conference Center, (2014)
  6. S. Giraldo, M. Neuschitzer, T. Thersleff, S. Lopez-Marino, Y. Sanchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Perez-Rodriguez, E. Saucedo, Large Efficiency Improvement in $Cu_2ZnSnSe_4$ Solar Cells by Introducing a Superficial Ge Nanolayer, Adv. Energy Mater. 5 (2015) 1501070. https://doi.org/10.1002/aenm.201501070
  7. Z. Zhang, L. Yao, Y. Zhang, J. Ao, J. Bi, S. Gao, Q. Gao, M.-J. Jeng, G. Sun, Z. Zhou, Q. He, Y. Sun, Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer, Adv. Sci. (2017) 1700645.
  8. C. Yan, K. Sun, J. Huang, S. Johnson, F. Liu, B. P. Veettil, K. Sun, A. Pu, J. A. Stride, M. A. Green X. Hao, Beyond 11% Efficient Sulfide Kesterite $Cu_2Zn_xCd_{1-x}SnS_4$ Solar Cell: Effects of Cadmium Alloying, ACS Energy Lett. 2 (2017) 930. https://doi.org/10.1021/acsenergylett.7b00129
  9. C. Leidholm, C. Hotz, A. Breeze, C. Sunderland, W. Ki, D. Zehner, Final Report: Sintered CZT(S,Se) Nanopartice Solar Cells on Metal Foil (2012)
  10. S. Lopez-Marino, Y. Sanchez, M. Espindola-Rodriguez, X. Alcobe, H. Xie, M. Neuschitzer, I. Becerril, S. Giraldo, M. Dimitrievska, M. Placidi, L. Fourdrinier, V. Izquierdo-Roca, A. Perez-Rodriguez, E. Saucedo, Alkali doping strategies for flexible and light-weight $Cu_2ZnSnSe_4$ solar cells, J. Mater. Chem. A 4 (2016) 1895. https://doi.org/10.1039/C5TA09640E
  11. Y. Zhang, Q. Ye, J. Liu, H. Chen, X. He, C. Liao, J. Han, H. Wang, J. Mei, W. M. Lau, Earth-abundant and low-cost CZTS solar cell on flexible molybdenum foil, RSC Adv. 4 (2014) 23666. https://doi.org/10.1039/C4RA02064B
  12. C.-Y. Peng, T. P. Dhakal, S. Garner, P. Cimo, S. Lu, C. R. Westgate, Fabrication of $Cu_2ZnSnS_4$ solar cell on a flexible glass substrate, Thin Solid Films 562 (2014) 574. https://doi.org/10.1016/j.tsf.2014.03.054
  13. Q. Tian, X. Xu, L. Han, M. Tang, R. Zou, Z. Chen, M. Yu, J. Yang, J. Hu, Hydrophilic $Cu_2ZnSnS_4$ nanocrystals for printing flexible, low-cost and environmentally friendly solar cells, CrystEngComm 14 (2012) 3847. https://doi.org/10.1039/c2ce06552e
  14. Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Fabrication of $Cu_2ZnSnS_4$ screen printed layers for solar cells, Sol. Energ. Mat. Sol. Cells 94 (2010) 2042. https://doi.org/10.1016/j.solmat.2010.06.010
  15. 한국에너지기술연구원 (KIER) 효율 인증 (2016)
  16. K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. S. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang, D.-H. Kim, A band-gap-graded CZT(S,Se) solar cell with 12.3% efficiency, J. Mater. Chem. A 4 (2016) 10151. https://doi.org/10.1039/C6TA01558A
  17. M. G. Gang, S. W. Shin, C. W. Hong, K. V. Gurav, J. Gwak, J. H. Yun, J. Y. Lee, J. H. Kim, Sputtering processed highly efficient $Cu_2ZnSn(S,Se)_4$ solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy, Green Chem. 18 (2016) 700. https://doi.org/10.1039/C5GC02417J
  18. U. V. Ghorpade, M. P. Sryawanshi, S. W. Shin, I. Kim, S. K. Ahn, J. H. Yun, C. Jeong, S. S. Kolekar, J. H. Kim, Colloidal Wurtzite $Cu_2SnS_3$ (CTS) Nanocrystals and Their Applications in Solar Cells, Chem. Mater. 28 (2016) 3308. https://doi.org/10.1021/acs.chemmater.6b00176
  19. J. Kim, S. Park, S. Ryu, J. Oh, B. Shin, Improving the open-circuit voltage of $Cu_2ZnSnSe_4$ thin film solar cells via interface passivation, Prog. Photovolt.: Res. Appl. 25 (2017) 308. https://doi.org/10.1002/pip.2864
  20. S. Banu, S. J. Ahn, S. K. Ahn, K. Yoon, A. Cho, Fabrication and characterization of cost-efficient $CuSbS_2$ thin film solar cell using hybrid inks, Sol. Energ. Mat. Sol. Cells 151 (2016) 14. https://doi.org/10.1016/j.solmat.2016.02.013
  21. K.-J. Yang, J.-H. Sim, D.-H. Son, D.-H. Jeon, D.-K. Hwang, D. Nam, H. Cheong, S. Y. Kim J. H. Kim, D.-H. Kim J.-K. Kang, Comparison of chalcopyrite and kesterite thin-film solar cells, Ind. Eng. Chem. Res. 45 (2017) 78. https://doi.org/10.1016/j.jiec.2016.09.005
  22. M. G. Romero, H. Du, G. Teeter, Y. Yan, M. Al-Jassim, Comparative study of the luminescence and intrinsic point defects in the kesterite $Cu_2ZnSnS_4$ and chalcopyrite $Cu(In,Ga)Se_2$ thin films used in photovoltaic applications, Phys. Rev. B 84 (2011) 165324. https://doi.org/10.1103/PhysRevB.84.165324
  23. S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of Lattice Defects in the Kesterite $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ Earth-Abundant Solar Cell Absorbers, Adv. Mater. 25 (2013) 1522. https://doi.org/10.1002/adma.201203146
  24. A. Nagoya, R. Asahi, G. Kresse, First-principles study of $Cu_2ZnSnS_4$ and the related band offsets for photovoltaic applications, J. Phys.: Condens. Matter 23 (2011) 404203. https://doi.org/10.1088/0953-8984/23/40/404203
  25. A. Redinger, M. Mousel, M. H. Wolter, N. Valle, S. Siebentritt, Influence of S/Se ratio on series resistance and on dominant recombination pathway in $Cu_2ZnSn(S,Se)_4$ thin film solar cells, Thin Solid Films 535 (2013) 291. https://doi.org/10.1016/j.tsf.2012.11.111
  26. S. Chen, J.-H. Yang, X. G. Gong, A. Walsh, S.-H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor $Cu_2ZnSnS_4$, Phys. Rev. B 81 (2010) 245204. https://doi.org/10.1103/PhysRevB.81.245204
  27. J. Han, S. W. Shin, M. G. Gang, J. H. Kim J. Y. Lee, Crystallization behaviour of co-sputtered $Cu_2ZnSnS_4$ precursor prepared by sequential sulfurization processes, Nanotechnology 24 (2013) 095706. https://doi.org/10.1088/0957-4484/24/9/095706
  28. G. Y. Kim, J. R. Kim, W. Jo, K. D. Lee, J. Y. Kim, T. T. T. Nguyen, S. Yoon, Effects of $Cu_{2-x}S$ phase removal on surface potential of $Cu_2ZnSnS_4$ thin-films grown by electroplating, Curr. Appl. Phys. 14 (2014) 1665. https://doi.org/10.1016/j.cap.2014.09.009
  29. K.-J. Yang, J.-H. Sim, B. Jeon, D.-H. Son, D.-H. Kim, S.-J. Sung, D.-K. Hwang, S. Song, D. B. Khadka, J. H. Kim, J.-K. Kang, Effects of Na and $MoS_2$ on $Cu_2ZnSnS_4$ thin-film solar cell, Prog. Photovolt.: Res. Appl. 23 (2015) 862. https://doi.org/10.1002/pip.2500
  30. G. Y. Kim, A. R. Jeong, J. R. Kim, W. Jo, D.-H. Son, D.-H. Kim, J.-K. Kang, Surface potential on grain boundaries and intragrains of highly efficient $Cu_2ZnSn(S,Se)_4$ thin-films grown by two-step sputtering process, Sol. Energ. Mat. Sol. Cells 127 (2014) 129. https://doi.org/10.1016/j.solmat.2014.04.019
  31. K.-J. Yang, J.-H. Sim, D.-H. Son, D.-H. Kim, G. Y. Kim, W. Jo, S. Song, J. H. Kim, D. Nam, H. Cheong, J.-K. Kang, Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of $Cu_2ZnSnS_4$ solar cells, Prog. Photovolt.: Res. Appl. 23 (2015) 1771. https://doi.org/10.1002/pip.2619
  32. S. Tajima, R. Asahi D. Isheim, D. M. Seidman, T. Itoh, M. Hasegawa, K. Ohishi, Atom-probe tomographic study of interfaces of $Cu_2ZnSnS_4$ photovoltaic cells, Appl. Phys. Lett. 105 (2014) 093901. https://doi.org/10.1063/1.4894858
  33. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, Properties of $Cu(In,Ga)Se_2$ solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi RRL 9 (2015) 28. https://doi.org/10.1002/pssr.201409520
  34. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZT(S,Se)-Se solar cells, Energy Environ. Sci. 8 (2015) 3134. https://doi.org/10.1039/C5EE02153G
  35. L. Vauche, L. Risch, Y. Sanchez, M. Dimitrievska, M. Pasquinelli, T. Goislard de Monsabert, P.-P. Grand, S. Jaime-Ferrer, E. Saucedo, 8.2% pure selenide kesterite thin-film solar cells from large-area electrodeposited precursors, Prog. Photovolt.: Res. Appl. 24 (2016) 38. https://doi.org/10.1002/pip.2643
  36. L. Kronik, D. Cahen, H. W. Schock, Effects of Sodium on Polycrystalline $Cu(In,Ga)Se_2$ and Its Solar Cell Performance, Adv. Mater. 10 (1998) 31. https://doi.org/10.1002/(SICI)1521-4095(199801)10:1<31::AID-ADMA31>3.0.CO;2-3
  37. S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, S. Niki, Na-induced variations in the structural, optical and electrical properties of $Cu(In,Ga)Se_2$ thin films, J. Appl. Phys. 106 (2009) 034908. https://doi.org/10.1063/1.3190528
  38. K.-Z. Zhang, J.-H. Tao, J.-F. Liu, J. He, Y.-C. Dong, L. Sun, P.-X. Yang, J.-H. Chu, Compact $Cu_2ZnSn(S,Se)_4$ Thin Films Fabricated by a Simple Sol-Gel Technique, J. Inorg. Mater. 29 (2014) 781.
  39. T. Gershon, Y. S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, R. Haight, Photovoltaic Materials and Devices Based on the Alloyed Kesterite Absorber $(Ag_xCu_{1-x})_2ZnSnSe_4$, Adv. Energy. Mater. 6 (2016) 1502468. https://doi.org/10.1002/aenm.201502468
  40. A. D. Collord, H. W. Hillhouse, Germanium Alloyed Kesterite Solar Cells with Low Voltage Deficits, Chem. Mater. 28 (2016) 2067. https://doi.org/10.1021/acs.chemmater.5b04806
  41. Z.-Y. Xiao, Y.-F. Li, B. Yao, R. Deng, Z.-H. Ding, T. Wu, G. Yang, C.-R. Li, Z.-Y. Dong, L. Liu, L.-G. Zhang, H.-F. Zhao, Bandgap engineering of $Cu_2Cd_xZn_{1-x}SnS_4$ alloy for photovoltaic applications: A complementary experimental and first-principles study, J. Appl. Phys. 114 (2013) 183506. https://doi.org/10.1063/1.4829457
  42. H. Hiroi, N. Sakai, Y. Iwata, T. Kato, H. Sugimoto, Impact of buffer on kesterite solar cells, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, (2015).