DOI QR코드

DOI QR Code

Understanding the Effect on Hydrogen Evolution Reaction in Alkaline Medium of Thickness of Physical Vapor Deposited Al-Ni Electrodes

Physical Vapor Deposition 방법으로 제조된 Al-Ni 전극의 두께가 알칼라인 수전해 수소발생반응에 미치는 영향 연구

  • HAN, WON-BI (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • CHO, HYUN-SEOK (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • CHO, WON-CHUL (Hydrogen Laboratory, Korea Institute of Energy Research) ;
  • KIM, CHANG-HEE (Hydrogen Laboratory, Korea Institute of Energy Research)
  • 한원비 (한국에너지기술연구원 수소연구실) ;
  • 조현석 (한국에너지기술연구원 수소연구실) ;
  • 조원철 (한국에너지기술연구원 수소연구실) ;
  • 김창희 (한국에너지기술연구원 수소연구실)
  • Received : 2017.12.14
  • Accepted : 2017.12.29
  • Published : 2017.12.31

Abstract

This paper presents a study of the effect of thickness of porous Al-Ni electrodes, on the Hydrogen Evolution Reaction (HER) in alkaline media. As varying deposition time at 300 W DC sputtering power, the thickness of the Al-Ni electrodes was controlled from 1 to $20{\mu}m$. The heat treatment was carried out in $610^{\circ}C$, followed by selective leaching of the Al-rich phase. XRD studies confirmed the presence of $Al_3Ni_2$ intermetallic compounds after the heat treatment, indicating the diffusion of Ni from the Ni-rich phase to Al-rich phase. The porous structure of the Al-Ni electrodes after the selective leaching of Al was also confirmed in SEM-EDS analysis. The double layer capacitance ($C_{dl}$) and roughness factor ($R_f$) of the electrodes were increased for the thicker Al-Ni electrodes. As opposed to the general results in above, there were no further improvements of the HER activity in the case of the electrode thickness above $10{\mu}m$. This result may indicate that the $R_f$ is not the primary factor for the HER activity in alkaline media.

Keywords

References

  1. N. Guilet and P. Millet, "Hydrogen production: by Electrolysis, 1st edition", Wiley-VCH, Germany, 2015, p. 117.
  2. H. Ibrahim, A. Ilinca, and J. Perron, "Energy storage systems-Characteristics and comparisons", Renewable Sustainable Energy Rev., Vol. 12, 2008, pp. 1221-1250. https://doi.org/10.1016/j.rser.2007.01.023
  3. G. Schiller, R. Henne, and V. Borck, "Vacuum plasma spraying of high-performance electrodes for alkaline water electrolysis", J. Therm. Spray Technol., Vol. 4, 1995, pp. 185-194. https://doi.org/10.1007/BF02646111
  4. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., Vol. 36, 2010, pp. 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  5. R. B. Rebak, "Nickel alloys for corrosive environments", Adv. Mater. Processes, Vol. 157, 2000, pp. 37-42.
  6. M. F. Kibria, M. S. Mridha, and A. H. Khan, "Electrochemical studies of a nickel electrode for the hydrogen evolution reaction", Int. J. Hydrog. Energy, Vol. 20, 1995, pp. 435-440. https://doi.org/10.1016/0360-3199(94)00073-9
  7. A. R. T. Morrison, L. Juillac, S. Guyomart, and R. Wuthrich, "Optimization of the nickel square wave treatment to produce highly active bifunctional alkaline hydrogen evolution catalysts", J. Electrochem. Soc., Vol. 163, 2016, pp. F3146-F3152. https://doi.org/10.1149/2.0201611jes
  8. H. Wendt and G. Kreysa, "Electrochemical engineering: science and technology in chemical and other industries", Springer, Germany, 1999.
  9. K. Subramanian, V. Arumugam, K. Asokan, P. Subbiah, and S. Krishnamurthy, "Plasma sprayed raney nickel coatings for hydrogen evolution reactions in alkaline solutions", Bull. Electrochem., Vol. 7, 1991, pp. 271-273.
  10. D. Chade, L. Berlouis, D. Infield, A. Cruden, P. T. Nielsen, and T. Mathiesen, "Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolyser", Int. J. Hydrog. Energy, Vol. 38, 2013, pp. 14380-14390. https://doi.org/10.1016/j.ijhydene.2013.09.012
  11. R. H. Jones and G. J. Thomas, "Materials for the Hydrogen Economy, 1st edition", CRC Press, USA, 2007.
  12. C. Kjartansdottir, M. Caspersen, S, Egelund, and P. Moller, "Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis", Electrochim. Acta, Vol. 142, 2014, pp. 324-335. https://doi.org/10.1016/j.electacta.2014.07.061
  13. C. K. Kjartansdottir, L. P. Nielsen, and P. Moller, "Development of durable and efficient electrodes for large-scale alkaline water electrolysis", Int. J. Hydrog. Energy, Vol. 38, 2013, pp. 8221-8231. https://doi.org/10.1016/j.ijhydene.2013.04.101
  14. D. M. Mattox, "Handbook of physical vapor deposition (PVD) processing, 2nd edition", Willian andrew, UK, 2010.
  15. C. C. Wu and F. B Wu, "Microstructure and mechanical properties of magnetron co-sputtered Ni-Al coatings", Surf. Coat. Technol., Vol. 204, 2009, pp. 854-859. https://doi.org/10.1016/j.surfcoat.2009.09.019
  16. Y. Wu, L. Wang, M. Chen, Z. Jin, W. Zhang, and R. Cao, "Preparation of cobalt-based electrodes by physical vapor deposition on various nonconductive substrates for electrocatalytic water oxidation", ChemSusChem, Vol. 10, 2017, pp. 4699-4703. https://doi.org/10.1002/cssc.201701576
  17. S. Swann, "Magnetron sputtering", Phys. Technol., Vol. 19, 1988, pp. 67-75. https://doi.org/10.1088/0305-4624/19/2/304
  18. M. Jansssen and G. Rieck, "Reaction diffusion and kirkendal-effect in nickel aluminium system", Trans. Metall. AIME, Vol. 239, 1967, pp. 1372-1385.
  19. W. J. Jang, H. M. Kim, J. O. Shim, S. Y. Yoo, K. W. Jeon, H. S. Na, Y. L. Lee, D. W. Lee, H.-S. Roh, and W. L. Yoon, "Deactivation of SiO2 supported Ni catalysts by structural change in the direct internal reforming reaction of molten carbonate fuel cell", Catal. Commun., Vol. 101, 2017, pp. 44-47. https://doi.org/10.1016/j.catcom.2017.07.028
  20. L. A. Stern and X. Hu, "Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles", Faraday Discuss., Vol. 176, 2014, pp. 363-379. https://doi.org/10.1039/C4FD00120F
  21. L. S. Castleman and L. L. Seigle, "Layer growth during interdiffusion in aluminum-nickel alloy system", Trans. Metall. AIME, Vol. 212, 1958, pp. 589-596.