DOI QR코드

DOI QR Code

A Study on Dynamic Map Data Provision System for Automated Vehicle

자율주행을 위한 동적지도정보 제공에 관한 연구

  • Yang, Inchul (Highway and Transportation Institute, Korea Institue of Civil Engineering and Building Technology) ;
  • Jeon, Woo Hoon (Highway and Transportation Institute, Korea Institue of Civil Engineering and Building Technology) ;
  • Lee, Hyang Mi (Highway and Transportation Institute, Korea Institue of Civil Engineering and Building Technology)
  • 양인철 (한국건설기술연구원 도로연구소) ;
  • 전우훈 (한국건설기술연구원 도로연구소) ;
  • 이향미 (한국건설기술연구원 도로연구소)
  • Received : 2017.09.14
  • Accepted : 2017.10.26
  • Published : 2017.12.31

Abstract

This study aims to develop the Vehicle Local Dynamic Map (V-LDM) and demonstrate its performance for providing dynamic map data efficiently to the vehicle control module. Firstly, the concept of the in-vehicle LDM has been established and then the system has been carefully designed according to the international standards. The high-precision digital map embedded in LDM has been designed to incorporate the lane-level information of road network, and the Dynamic Map protocol (DM protocol) which is a message protocol including the road data with dynamic traffic event data has been defined. The performance test of the proposed system has been conducted in the uninterrupted road section of Kyungbu expressway, showing that both of the data size and the elapsed time to finish the process are almost linearly proportional to the length of target road. Finally, it is recommended that the length of target road for DM protocol be less than 250m.

본 연구는 기존에 정의된 LDM(Local Dynamic Map)에 동적지도 정보 제공 기능을 확장한 차량LDM(V-LDM) 기술의 설계 및 개발, 성능 검증을 목적으로 한다. 이를 위해 LDM과 동적지도 정보 제공 관련 국제표준 및 관련 기술을 참고하여 차량LDM 시스템 구성을 설계하였다. 또한 자율주행을 위한 차로 수준의 정보를 갖는 정밀전자지도의 기본 구성을 제안하였고, 차량 전방의 주행 환경 정보(정적+동적 정보) 전달을 위한 메시지인 Dynamic Map (DM) 프로토콜의 기본 구조를 정의하였다. 경부고속도로의 기본구간을 대상으로 제안된 정밀전자지도와 DM프로토콜 전달 기능의 성능을 검증한 결과, 데이터 크기와 처리 수행 시간 모두 전방거리에 선형적으로 비례함을 확인하였고, 10Hz의 갱신 주기를 갖기 위해 전방 최대 250m에 해당하는 정보를 제공하는 것을 적절한 대안으로 제시하였다.

Keywords

References

  1. ADASIS Forum, http://adasis.org, 2017.09.11.
  2. Ahuja R. K., Magnanti T. L. and Orlin J. B.(1993), Network Flows: Theory, Algorithms and Applications, Englewood Cliffs, NJ: Prentice Hall.
  3. ETSI(2011), Local Dynamic Map (LDM); Rationale for and guidance on standardization, ETSI/TR 102 863.
  4. ISO(2015), Definition of a global concept for LDM, ISO/TS 18750.
  5. ISO(2016), Extension of Map Database Specifications for Application of C-ITS, IS 14296.
  6. Kim B., Kang B., Park Y. and Kwon J.(2017), "A Study on the Improvement Method of Precise Map for Cooperative Automated Driving based on ISO 14296," The Journal of the Korea Institute of Intelligent Transportation Systems, vol. 16, no. 1, pp.131-146. https://doi.org/10.12815/kits.2017.16.1.131
  7. Koenders E., Oort D. and Rozema K.(2014), An Open Local Dynamic Map, 10th ITS European Congress, Helsinki.
  8. Ress, C., Balzer, D., Bracht, A., Durekovic, S., and Lowenau, J.(2008), Adasis protocol for advanced in-vehicle applications, 15th World Congress on Intelligent Transport Systems.
  9. Sato, K., Shimada, H., Katsunuma, S., Yamaguchi, A., Yamada, M., Honda, Sh., and Takada, H.(2012), "Stream LDM: Local Dynamic Map (LDM) with Stream Processing Technology," The Science and Engineering Review of Doshisha University, vol. 53. no. 3, p.28.
  10. Vivo, G.(2010), LDM API and Usage Reference, SAFESPOT Integrated Project.
  11. Yang(2017), Local Dynamic Map (LDM), KICTzine, January+February.

Cited by

  1. Development of lane-level location data exchange framework based on high-precision digital map vol.19, pp.8, 2018, https://doi.org/10.9728/dcs.2018.19.8.1617
  2. A study on lane path contents for car navigation systems to resolve road inconvenience vol.20, pp.1, 2019, https://doi.org/10.9728/dcs.2019.20.1.207
  3. 차로 수준의 동적위치참조 방법 개발 vol.17, pp.5, 2018, https://doi.org/10.12815/kits.2018.17.5.188
  4. Development of traffic state observation technology using automotive sensors vol.19, pp.11, 2018, https://doi.org/10.9728/dcs.2018.19.11.2131
  5. Digital road event management system using high-precision map vol.19, pp.11, 2017, https://doi.org/10.9728/dcs.2018.19.11.2219
  6. A study on performance improvement of map matching algorithm vol.21, pp.1, 2017, https://doi.org/10.9728/dcs.2020.21.1.213
  7. Cooperative Automated Vehicle System for Avoiding Road Work Zone Using Dynamic Infrastructure Information vol.28, pp.3, 2017, https://doi.org/10.7467/ksae.2020.28.3.167
  8. Implementation of a Sensor Big Data Processing System for Autonomous Vehicles in the C-ITS Environment vol.10, pp.21, 2020, https://doi.org/10.3390/app10217858
  9. Distributed Congestion Control Exploiting Local Congestion Information for Cellular Vehicle-to-Everything vol.32, pp.2, 2021, https://doi.org/10.5515/kjkiees.2021.32.2.101