DOI QR코드

DOI QR Code

MR Haptic Device for Integrated Control of Vehicle Comfort Systems

차량 편의장치 통합 조작을 위한 MR 햅틱 장치

  • Received : 2017.10.20
  • Accepted : 2017.12.20
  • Published : 2017.12.28

Abstract

In recent years, the increase of secondary controls within vehicles requires a mechanism to integrate various controls into a single device. This paper presents control performance of an integrated magnetorheological (MR) haptic device which can adjust various in-vehicle comfort instruments. As a first step, the MR fluid-based haptic device capable of both rotary and push motions within a single device is devised as an integrated multi-functional instrument control device. Under consideration of the torque and force model of the proposed device, a magnetic circuit is designed. The proposed MR haptic device is then manufactured and its field-dependent torque and force are experimentally evaluated. Furthermore, an inverse model compensator is synthesized under basis of the Bingham model of the MR fluid and torque/force model of the device. Subsequently, haptic force-feedback maps considering in-vehicle comfort functions are constructed and interacts with the compensator to achieve a desired force-feedback. Control performances such as reflection force are experimentally evaluated for two specific comfort functions.

최근 차량내부에서는 운전과 직접적인 관련이 적은 다양한 편의장치들이 도입되고 있으며, 이러한 장치들의 조작환경을 하나로 통합하려는 노력이 시도되고 있다. 본 논문은 자동차 내의 다양한 편의장치에 대한 통합 조작환경을 구축하기 위해 자기유변유체(magnetorheological fluid; MR 유체)를 이용한 햅틱장치를 제안하고자 한다. 이를 위해 먼저 차량 편의 조작장치들이 갖는 회전과 상하 수직 운동을 동시에 구현할 수 있는 메커니즘을 고안하고 햅틱 기능을 부여하기 위해 MR 유체를 도입함으로써 하나의 장치로 다기능 조작이 가능한 햅틱 장치를 고안한다. 장치에서 발생하는 반향력에 대한 모델링에 근거하여 MR 햅틱 장치의 자료를 설계하고 시작품을 제작한다. 그리고 완성된 장치의 회전 및 수직 운동에 대한 응답 성능시험을 수행하여 제안된 모델을 검정한다. 또한 힘 반향 성능을 구현하기 위해 장치의 반향력 모델을 이용한 역모델 보상기(inverse model compensator)를 설계한다. 마지막으로 실제 자동차의 여러 편의 기능의 작동과정을 고려하여 햅틱 반향력 맵을 구축하고 제어기와 연동하여 제작된 햅틱 장치의 힘반향(force-feedback) 제어 성능을 평가한다.

Keywords

References

  1. Holland, K. L., Williams, R. L., Conatser, R. R., Howell, J. N. and Cade, D., 2004, "The Implementation and Evaluation of a Virtual Haptic Back", Virtualreality of the Journal of the Virtual Reality Society, Vol. 7, No. 2, pp. 94-102. https://doi.org/10.1007/s10055-003-0118-5
  2. An, J. and Kwon, D. S., 2002, "Haptic Experimentation on a Hybrid Active/Passive Force Feedback Device", Proceedings of IEEE International Conference on Robotics and Automation, Vol. 4, pp. 4217-4222.
  3. Shin, K. W. C., Han, J. H., 2017, "Qualitative Exploration on Children's Interactions in Telepresence Robot Assisted Language Learning", Journal of the Korea Convergence Society, Vol. 8, No. 3, pp. 177-184. https://doi.org/10.15207/JKCS.2017.8.3.177
  4. Bengtsson, P., Grane, C., Isaksson, J., 2003, "Haptic/Graphic Interface for In-vehicle Comfort Functions - a Simulator Study and an Experimental Study", Proceedings of The 2nd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications, pp. 25-29.
  5. Choi, S. B., Hong, S. R. and Cheong C. C. and Park, Y. K., 1999, "Comparison of Field-Controlled Characteristics between ER and MR Clutches", Journal of Intelligent Material Systems and Structures, Vol.10, No.8, pp.615-619. https://doi.org/10.1106/217G-CEUN-Q710-AB60
  6. Neelakantan, V. A. and Washington, G. N., 2005, "Modeling and Reduction of Centrifuging in Magnetorheological (MR) Transmission Clutches for Automotive Applications", Journal of Intelligent Material Systems and Structures, Vol. 16, No. 9, pp. 703-712. https://doi.org/10.1177/1045389X05054329
  7. Jolly, M. R., Bender, J. W., Carlson, J. D., 1997, "Properties and Applications of Commercial Magnetorheological Fluids", the International Society for Optical Engineering, Vol. 3327, pp. 262-275.
  8. Lee, H. S., Choi, S. B., 2001, "Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles", Journal of Intelligent Material Systems and Structures, Vol. 11, No. 1, pp. 80-87. https://doi.org/10.1177/104538900772664422
  9. Hong, S. R., Choi, S. B., Jung, W. J., Jeong , W. B., 2003, "Vibration Isolation of Structural Systems Using Squeeze-Mode ER Mounts", Journal of Intelligent Material Systems and Structures, Vol. 13, No. 7/8, pp. 421-424.
  10. Ginder, J. M. and Ceccio, S. L., 1995, "Effect of Electrical Transients on the Shear Stresses in Electrorheological Fluids", Journal of Rheology, Vol. 39, No. 1, pp. 211-234. https://doi.org/10.1122/1.550682
  11. Kang, P. S., Han, Y. M., Choi, S. B., 2006 "Force Feedback Control of an Electrorheological Haptic Device in MIS Virtual Environment", Transactions of KSNVE, Vol. 16. No. 12, pp. 1286-1293. https://doi.org/10.5050/KSNVN.2006.16.12.1286
  12. Vitrani, M. A., 2006, "Torque Control of Electrorheological Fluidic Resistive Actuators for Haptic Vehicular Instrument Controls", American Society of Mechanical Engineers, Vol. 128, pp. 216-226.
  13. Li, W.H., 2004, "Magnetorheological Fluids based Haptic Device", Emerald Sensor Review, Vol. 24, pp. 68-73. https://doi.org/10.1108/02602280410515842
  14. Lord Corporation, Lord Technical Data, http://www.lordfulfillment.com.
  15. Nguyen Q. H., Han Y. M., Choi S. B. and Wereley N. M., 2007, "Geometry Optimization of MR Valves Constrained in a Specific Volume Using the Finite Element Method", Smart Materials & Structures, Vol. 16, No. 6, pp. 2242-2252. https://doi.org/10.1088/0964-1726/16/6/027