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This study was investigated to test whether paternal DNA that was destined for degradation was properly licensed by
testing for the presence of mini-chromosome maintenance protein (MCM) 7 and origin recognition complex (ORC) 2 in
the paternal pronuclei. ORC2 is one of the first licensing protein to come on and MCM7 is one of the last licensing protein
to come on. Zygotes were prepared by injection of control and treated sperm injection (ICSI). To control for DNA
breakage, epididymal spermatozoa were treated with DNase I to fragment the DNA, then injected into oocytes. The
presence of MCM7 and ORC?2 in the pronuclei of mouse zygotes was tested by immunohistochemistry, just before the
onset of DNA synthesis, at 5 h after fertilization, and after DNA synthesis began, at 9 h post fertilization. We found that
in all cases, both MCM7 and ORC2 were present in both pronuclei at 5 h after sperm injection, just before DNA synthesis
began. This indicates that no matter how extensive the DNA damage, recruitment of licensing proteins to the origins of
replication was not inhibited. Sperm DNA fragmentation does not prevent licensing of DNA replication origins.
Furthermore, the embryo recognizes DNA that is damaged by nucleases. Our data indicate that the one-cell embryo does
harbor a mechanism to prevent the replication of severely damaged DNA from spermatozoa, even though the embryos
do not undergo classical apoptosis.
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Table 1. MCM7 and ORC2 expression at 5 h after epididymal sperm injection into mouse oocyte (Before DNA synthesis)

No. of zygotes (%)

No. of injected

Group oocytes Stained with Stained with Stained with
MPN only FPN only MPN and FPN
Control 113 0(0.0) 0(0.0) 113 (100)
MCM 7 SCF 110 0(0.0) 0(0.0) 110 (100)
SCF-religated 103 0(0.0) 0(0.0) 103 (100)
Control 113 0(0.0) 0(0.0) 113 (100)
ORC2 SCF 106 0(0.0) 0(0.0) 106 (100)
SCF-religated 104 0(0.0) 0(0.0) 104 (100)
MPN: male pronuclei, FPN: female pronuclei.
Control SCF SCF-religated Control SCF SCF-religated
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Fig. 1. Immunocytochemical localization of MCM?7 and ORC2 in
mouse one-cell embryos at 5 h after epididymal sperm injection
into mouse oocyte (Before DNA synthesis). Embryos were fixed
and double stained with antibodies to MCM7 (Green) and ORC2
(Red). Pronuclei were also stained with DAPI (Blue), and then
visualized by confocal microscopy.
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Fig. 2. Immunocytochemical localization of MCM?7 and ORC2 in
mouse one-cell embryos at 9 h after epididymal sperm injection
into mouse oocyte (During DNA synthesis). Embryos were fixed
and double stained with antibodies to MCM?7 (Green) and ORC2
(Red). Pronuclei were also stained with DAPI (Blue), and then
visualized by confocal microscopy.
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Table 2. MCM7 and ORC2 expression at 9 h after epididymal sperm injection into mouse oocyte (During DNA synthesis)

No. of zygotes (%)

No. of injected

Group oocytes Stained with Stained with Dtained with
MPN only FPN only MPN and FPN

Control 112 0(0.0) 0(0.0) 112 (100)
MCM7 SCF 112 0(0.0) 0(0.0) 112 (100)

SCF-religated 110 0(0.0) 0(0.0) 110 (100)

Control 113 0(0.0) 0(0.0) 113 (100)
ORC2 SCF 105 0(0.0) 0(0.0) 105 (100)

SCF-religated 113 0(0.0) 0(0.0) 113 (100)
MPN: male pronuclei, FPN: female pronuclei.

Control SCF SCF-religated Control SCF SCF-religated
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Fig. 3. Immunocytochemical localization of MCM7 and ORC2 in
mouse one-cell embryos at 5 h after vas deferens sperm injection
into mouse oocyte (Before DNA synthesis). Embryos were fixed
and double stained with antibodies to MCM?7 (Green) and ORC2
(Red). Pronuclei were also stained with DAPI (Blue), and then
visualized by confocal microscopy.

3} ORC2E T3+ A3}= Fig 4 2 Table 49} 7T} Vas-
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Fig. 4. Immunocytochemical localization of MCM?7 and ORC2 in
mouse one-cell embryos at 9 h after vas deferens sperm injection
into mouse oocyte (During DNA synthesis). Embryos were fixed
and double stained with antibodies to MCM7 (Green) and ORC2
(Red). Pronuclei were also stained with DAPI (Blue), and then
visualized by confocal microscopy.
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Table 3. MCM7 and ORC2 expression at 5 h after vas deferens sperm injection into mouse oocyte (Before DNA synthesis)

No. of zygotes (%)

No. of injected

Group oocytes Stained with Stained with Stained with
MPN only FPN only MPN and FPN
Control 110 0(0.0) 0(0.0) 110 (100)
MCM7  SCF 104 0(0.0) 0(0.0) 104 (100)
SCF-religated 94 0(0.0) 0(0.0) 94 (100)
Control 108 0(0.0) 0(0.0) 108 (100)
ORC2 SCF 107 0(0.0) 0(0.0) 107 (100)
SCF-religated 95 0(0.0) 0(0.0) 95 (100)

MPN: male pronuclei, FPN: female pronuclei.

Table 4. MCM?7 and ORC?2 expression at 9 h after vas deferens sperm injection into mouse oocyte (During DNA synthesis)

No. of zygotes (%)

No. of injected

Group oocytes Stained with Stained with Stained with
MPN only FPN only MPN and FPN
Control 104 0(0.0) 0(0.0) 104 (100)
MCM7  SCF 97 0(0.0) 0(0.0) 97 (100)
SCF-religated 115 0(0.0) 0(0.0) 115 (100)
Control 105 0(0.0) 0(0.0) 105 (100)
ORC2 SCF 105 0(0.0) 0(0.0) 105 (100)
SCF-religated 107 0(0.0) 0(0.0) 107 (100)

MPN: male pronuclei, FPN: female pronuclei.
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