DOI QR코드

DOI QR Code

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan (Department of Nanopolymer Material Engineering, Pai Chai University)
  • 투고 : 2017.09.03
  • 심사 : 2017.09.25
  • 발행 : 2017.12.30

초록

In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

키워드

참고문헌

  1. V. R. Pattabiraman and J. W. Bode, "Rethinking amide bond synthesis", Nature, Vol. 480, pp. 471- 479, 2011. https://doi.org/10.1038/nature10702
  2. C. Montalbetti and V. Falque, "Amide bond formation and peptide coupling", Tetrahedron, Vol. 61, pp. 10827 -10852, 2005. https://doi.org/10.1016/j.tet.2005.08.031
  3. C. L. Allen and J. M. J. Williams, "Metal-catalyzed approaches to amide bond formation", Chem. Soc. Rev., Vol. 40, pp. 3405-3415, 2011. https://doi.org/10.1039/c0cs00196a
  4. S. Roy, S. Roy, and G. W. Gribble, "Metal-catalyzed amidation", Tetrahedron, Vol. 68, pp. 9867-9923, 2012. https://doi.org/10.1016/j.tet.2012.08.065
  5. H. Lundberg, F. Tinnis, N. Selander, and H. Adolfsson, "Catalytic amide formation from non-activated carboxylic acids and amines", Chem. Soc. Rev., Vol. 43, pp. 2714-2742, 2014. https://doi.org/10.1039/C3CS60345H
  6. M. B. Smith and J. March, "March's advanced organic chemistry: reactions, mechanisms, and structure", Hoboken: John Wiley & Sons, Ltd., 5th, pp. 508-510, 2000.
  7. D. R. Corbin, S. Schwarz, and G. C. Sonnichsen, "Methylamines synthesis: A review", Catal. today, Vol. 37, pp. 71-102, 1997. https://doi.org/10.1016/S0920-5861(97)00003-5
  8. J. T. L. Thong, W. K. Choi, and C. W. Chong, "TMAH etching of silicon and the interaction of etching parameters", Sens. Actuators A Phy., Vol. 63, pp. 243- 249, 1997. https://doi.org/10.1016/S0924-4247(97)80511-0
  9. C. L. Berre, P. Serp, P. Kalck, and G. P. Torrence, "Acetic acid. Ullmann's Encyclopedia of Industrial Chemistry", Weinheim: Wiley-VCH, pp. 1-34, 2013.
  10. D. Stoye, "Solvents in Ullmann's Encyclopedia of Industrial Chemistry", Weinheim: Wiley-VCH, 2000.
  11. F. Liu, W. Tian, X. Yang, and G. Jia, "Hydrogen-bonding and dielectric response of N,N-dimethylacetamide aqueous solutions under E/M fields using molecular dynamics", J. Mol. Liq., Vol. 197, pp. 100- 105, 2014. https://doi.org/10.1016/j.molliq.2014.04.038
  12. E. Valeur and M. Bradley, "Amide bond formation: beyond the myth of coupling reagents", Chem. Soc. Rev., Vol. 38, pp. 606-631, 2009. https://doi.org/10.1039/B701677H
  13. A. El-Faham and F. Albericio, "Peptide coupling reagents, more than a letter soup", Chem. Rev., Vol. 111, pp. 6557-6602, 2011. https://doi.org/10.1021/cr100048w
  14. H. Lundberg, F. Tinnis, N. Selander, and H. Adolfsson, "Catalytic amide formation from non-activated carboxylic acids and amines", Chem. Soc. Rev., Vol. 43, pp. 2714-2742, 2014. https://doi.org/10.1039/C3CS60345H
  15. R. P. Marriella and K. H. Brown, "A novel SN1 displacement: The reaction of tertiary amines with acetic anhydride", Can. J. Chem., Vol. 49, pp. 3348- 3351, 1971. https://doi.org/10.1139/v71-557
  16. G. Drefahl, H. Lückert, and W. Kohler, "Untersuchungen über stilbene. XXXVI. notiz zur spaltung der C- N-bindung tertiärer amine durch säureanhydride und-chloride", Adv. Synth. Catal., Vol. 11, pp. 341-344, 1960.
  17. B. T. Khai and A. Arcelli, "Homogeneous transition- metal catalysis. Cleavage of the C-N bond of tertiary amines by acid anhydrides in the presence of transition metal ions", J. Organomet. Chem., Vol. 252, pp. c9-c13, 1983. https://doi.org/10.1016/0022-328X(83)80066-7
  18. N. O V. Sonntag, "The reactions of aliphatic acid chlorides", Chem. Rev., Vol. 52, pp. 237-416, 1953. https://doi.org/10.1021/cr60162a001
  19. M. G. Voronkov, I. P. Tsyrendorzhieva, and V. I. Rakhlin, "Acyl iodides in organic synthesis. reactions with morphoine, piperidine, and N-hydrocarbylpiperidines", Russian Journal of Organic Chemistry, Vol. 46, pp. 794- 797, 2010. https://doi.org/10.1134/S1070428010060047
  20. M. G. Voronkov, I. P. Tsyrendorzhieva, V. I. Rakhlin, "Acyl iodides in organic synthesis: XI unusual N-C bond cleavage in tertiary amines", Russian Journal of Organic Chemistry, Vol. 44, pp. 481-484, 2008. https://doi.org/10.1134/S1070428008040015
  21. J. S. Roberts and H. A. Skinner, "Dissociation energies of carbon bonds, and resonance energies in hydrocarbon radicals", Transactions of the Faraday Society, Vol. 45, pp. 339-357, 1945.
  22. M. G. Voronkov, N. N. Vlasova, and A. V. Vlasov, "Acyl iodides in organic and organoelement chemistry", Russian Chemical Bulletin, Vol. 62, pp. 1945- 1961, 2013. https://doi.org/10.1007/s11172-013-0283-y
  23. M. M. Taquikhan, S. B. Halligudi, S. Shukla, and S. H. R. Abdi, "Kinetic study of the carbonylation of diethylamine and trimethylamine catalyzed by the water-soluble $K[Ru(III)(EDTA-H)Cl]{\cdot}2H_2O$ complexes in aqueous medium", J. Mol. Cat., Vol. 48, pp. 325-333, 1988. https://doi.org/10.1016/0304-5102(88)85015-6
  24. M. M. khan, S. B. Halligudi, S. Shukla, and S. H. R. Abdi, "Kinetic study of the carbonylation of nbutylamine using homogeneous water-soluble Ru(II)- EDTA-CO catalyst", J. Mol. Cat., Vol. 51, pp. 129- 135, 1989. https://doi.org/10.1016/0304-5102(89)80093-8
  25. H. W. Sternberg, I. Wender, R. A. Friedel, and M. Orchin, "The chemistry of metal carbonyls. III. The reaction between dicobalt octacarbonyl and dimethylamine1", J. Am. Chem. Soc., Vol. 75, pp. 3148- 3152, 1953. https://doi.org/10.1021/ja01109a031
  26. T. Kobayashi and M. Tanaka, "Cleavage of C-N bonds of tertiary amines and carbonylation of organic halides with palladium complexes as cataysts leading to formation of tertiary amides", J. Organomet. Chem., Vol. 231, pp. C12-C14, 1982. https://doi.org/10.1016/S0022-328X(00)89234-7
  27. W. Reppe, "Carbonylierung I: Uber die umsetzung von acetylen mit kohlenoxyd und verbindungen mit reaktionsfahigen wasserstoffatomen Synthesen ${\alpha},{\beta}$-ungesattigter carbonsauren und ihrer derivate", European J. Org. Chem., Vol. 582, pp. 1-37, 1953
  28. A. Brennfuhrer, H. Neumann, and M. Beller, "Palladium- catalyzed carbonylation reactions of aryl halides and related compounds", Angew. Chem. Int. Ed., Vol. 48, pp. 4114-4133, 2009. https://doi.org/10.1002/anie.200900013
  29. C. F. J. Barnard, "Palladium-catalyzed carbonylation-a reaction come of age", Organometallics, Vol. 27, pp. 5402-5422, 2008. https://doi.org/10.1021/om800549q
  30. R. S. Mane and B. M. Bhanage. "Pd/C-catalyzed aminocarbonylation of aryl iodides via oxidative C- N bond activation of tertiary amines to tertiary amides", J. Org. Chem., Vol. 81, pp. 1223-1228, 2016. https://doi.org/10.1021/acs.joc.5b02385
  31. D. Forster, "On the mechanism of a rhodium-complex- catalyzed carbonylation of methanol to acetic acid", J. Am. Chem. Soc., Vol. 98, pp. 846-848, 1976. https://doi.org/10.1021/ja00419a041
  32. R. J. Adcock, D. H. Nguyen, S. Ladeira, C. L. Berre, P. Serp, and P. Kalck, "Reactivity of rhodium(I) complexes bearing nitrogen-containing ligands toward $CH_3I$: synthesis and full characterization of neutral $cis-[RhX(CO)_2(L)]$ and acetyl $[RhI({\mu}-I)(COMe)(CO)(L)]_2$ complexes", Inorg. Chem., Vol. 51, pp. 8670- 8685, 2012. https://doi.org/10.1021/ic2019988
  33. A. Haynes, "Catalytic methanol carbonylation", Advances in Catalysis, Vol. 53, pp. 1-45, 2010.
  34. C. M. Thomas and G. Suss-Fink, "Ligand effects in the rhodium-catalyzed carbonylation of methanol", Coord. Chem. Rev., Vol. 243, pp. 125-142, 2003. https://doi.org/10.1016/S0010-8545(03)00051-1
  35. S. S. Tonde, A. A. Kelkar, M. M. Bhadbhade, and R. V. Chaudhari, "Isolation and characterization of an iodide bridged dimeric palladium complex in carbonylation of methanol", J. Organomet. Chem., Vol. 690, pp. 1677-1681, 2005. https://doi.org/10.1016/j.jorganchem.2005.01.010
  36. N. Rizkalla, "Acetic acid production via low-pressure, nickel-catalyzed methanol carbonylation", ACS Symp. Ser., Vol. 328, pp. 61-76, 1987.
  37. N. Yoneda, S. Kusano, M. Yasui, P. Pujado, and S. Wilcher, "Recent advances in processes and catalysts for the production of acetic acid", Appl. Cat. A Gen., Vol. 221, pp. 253-265, 2001. https://doi.org/10.1016/S0926-860X(01)00800-6
  38. A. Haynes, "Acetic acid synthesis by catalytic carbonylation of methanol", Catalytic Carbonylation Reactions, Berlin: Springer, Vol. 18, pp. 179-205, 2006.
  39. J. H. Jones, "The $cativa^{TM}$ process for the manufacture of acetic acid", Platin. Met. Rev., Vol. 44, pp. 94- 105, 2000.
  40. H. Friederich, K. Sepp, "A process for the preparation of carboxamides", DE Patent 948056, 1956.
  41. K. Nozaki, E. Cerrito, "Dimethylacetamide production", US Patent 3407231, 1968.
  42. H. E. Bellis, "Dimethylacetamide from carbonylation of trimethylamine", EP Patent 0185823, 1984.
  43. T. Kazuo, "Dimethylacetamide production", JP Patent 3275656, 1991.
  44. J. R. Zhan, J. B. Guo, X.L. Jiang, "Method for preparing N,N-dimethylacetamide", CN Patent 101003491, 2007.
  45. P. Roose, "Process for preparing secondary amides by carbonylation of a corresponding tertiary amine", WO Patent 2010057874 A1, 2010.
  46. R. B. Fahim and E. A. Moelwyn-Hughes, "Kinetics of the reaction between methyl iodide and trimethylamine in carbon tetrachloride solution", J. Chem. Soc. (Resumed), pp. 1035-1041, 1956. https://doi.org/10.1039/jr9560001035
  47. M. Sawicka, P. Storoniak, P. Skurski, J. Blazejowski, and J. Rak, "TG-FTIR, DSC and quantum chemical tudies of the thermal decomposition of quaternary methylammonium halides", Chem. Phys., Vol. 324, pp. 425-437, 2006. https://doi.org/10.1016/j.chemphys.2005.11.023
  48. M. Sawicka, P. Storoniak, J. Blazejowski, and J. Rak, "TG-FTIR, DSC, and quantum-chemical studies on the thermal decomposition of quaternary ethylammonium halides", J. Phys. Chem. A, Vol. 110, pp. 5066-5074, 2006. https://doi.org/10.1021/jp057484b
  49. Wood, J. S., "Stereochemical electronic structural aspects of five-coordination", In Progress in inorganic chemistry, New York: John Wiley & Sons, pp. 227-451, 1972.
  50. P. L. Goggin, R. J. Goodfellow, and F. J. S. Reed, "Trimethylamine complexes of platinum (II) and palladium (II) and their vibrational and proton nuclear magnetic resonance spectra", Journal of the Chemical Society, Dalton Transactions, Vol. 12, pp. 1298-1303, 1972.
  51. K. R. Millington, S. R. Wade, G. R. Willey, and M. G. Drew, "Zinc (II), iron (III), molybdenum (II) chloride and molybdenum (V), molybdenum (VI) oxochloride complexes of trimethylamine: synthesis, spectra and X-ray crystal structure characterization", Inorganica Chim. Acta, Vol. 89, pp. 185-191, 1984. https://doi.org/10.1016/S0020-1693(00)82349-X
  52. J. Hughes and G. R. Willey, "Trimethylamine complexes of zirconium (IV) halides", Inorganica Chim. Acta, Vol. 20, pp. 137-140, 1976. https://doi.org/10.1016/S0020-1693(00)94105-7
  53. G. R. Willey, "Cis-tetrachlorobis (trimethylamine) hafnium (IV): synthesis and characterization", Inorganica Chim. Acta, Vol. 21, p. L12, 1977. https://doi.org/10.1016/S0020-1693(00)86211-8
  54. S. R. Wade and G. R. Willey, "Coordination studies of hafnium (IV): reactions of HfX4 (X=Br, I) and (${\pi}$-C5H5) 2MCl2 (M=Ti, Zr, Hf) with trimethylamine", Journal of the Less Common Metals, Vol. 68, pp. 105-106, 1979. https://doi.org/10.1016/0022-5088(79)90279-0
  55. T. Gelbrich, U. Dumichen, and J. Sieler, "Bis-adduct of trimethylamine with aluminium trichloride", Acta Crystallogr. Struct. Chem., Vol. 55, pp. 1797-1798, 1999.
  56. H. Mei, W. Han, J. Hu, S. Xiao, Y. Lei, R. Zhang, W. Mo, and G. Li, "Palladium-catalyzed unstrained $C(sp^3)$-N bond activation: the synthesis of N,Ndimethylacetamide by carbonylation of trimethylamine", Appl. Organomet. Chem., Vol. 27, pp. 177- 183, 2013. https://doi.org/10.1002/aoc.2964
  57. Y. Lei, R. Zhang, L. Wu, Q. Wu, H. Mei, and G. Li, "Palladium-catalyzed carbonylation of quaternary ammonium halides to tertiary amides", Appl. Organomet. Chem., Vol. 28, pp. 310-314, 2014. https://doi.org/10.1002/aoc.3126
  58. A. M. Trzeciak, W. Wojtkow, J. J. Ziokowski, J. Wrzyszcz, and M. Zawadzki, "The role of Pd colloids as catalysts in the phosphane-free methoxycarbonylation of iodobenzene", New J. Chem., Vol. 28, pp. 859-863, 2004. https://doi.org/10.1039/B401912A
  59. Y.-S. Lin and A. Yamamoto, "Studies relevant to palladium-catalyzed carbonylation processes. Mechanisms of formation of esters and amides from benzylpalladium and (phenylacetyl)palladium complexes on reactions with alcohols and amines", Organometallics, Vol. 17, pp. 3466-3478, 1998. https://doi.org/10.1021/om980234f
  60. J, Yang, A. Hanes, and P. M. Maitlis, "The carbonylation of methyl iodide and methanol to methyl acetate catalysed by palladium and platinum iodides", Chem. Commun., Vol. 2, pp. 179-180, 1999.
  61. J. Kiwi and M. Gratzel, "Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water", J. Am. Chem. Soc., Vol. 101, pp. 7214-7217, 1979. https://doi.org/10.1021/ja00518a015
  62. M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, N. Breuer, and R. Vogel, "Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM", Science, Vol. 267, pp. 367-369, 1995. https://doi.org/10.1126/science.267.5196.367
  63. Y. Lei, R. Zhang, W. Han, H. Mei, Y. Gu, B. Xiao, and G. Li, "Promotion effect of lewis acid/$(CH_3)_4NI$ on $[Co(CO)_4]^−$-catalyzed C-N bond activation in the carbonylation of trimethylamine", Catal. Commun., Vol. 38, pp. 45-49, 2013. https://doi.org/10.1016/j.catcom.2013.04.017
  64. Y. Lei, R. Zhang, Q. Wu, H. Mei, B. Xiao, and G. Li, "Carbonylation of quaternary ammonium salts to tertiary amides using $NaCo(CO)_4$ catalyst", J. Mol. Catal. A Chem., Vol. 381, pp. 120-125, 2014. https://doi.org/10.1016/j.molcata.2013.10.014
  65. D. Forster, "Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes", Advances in Organometallic Chemistry, Vol. 17, pp. 255-267, 1979.
  66. D. Forster, "Kinetic and spectroscopic studies of the carbonylation of methanol with an iodide-promoted iridium catalyst", Journal of the Chemical Society, Dalton Transactions, pp. 1639-1645, 1979.
  67. P. M. Maitlis, A. Haynes, G. J. Sunley, and M. J. Howard, "Methanol carbonylation revisited: thirty years on", Journal of the Chemical Society, Dalton Transactions, Vol. 11, pp. 2187-2196, 1996.
  68. A. Haynes, B. E. Mann, D. J. Gulliver, G. E. Morris, and P. M. Maitlis, "Direct observation of MeRh (CO) 2I3-, the key intermediate in rhodium-catalyzed methanol carbonylation", J. Am. Chem. Soc., Vol. 113, pp. 8567-8569, 1991. https://doi.org/10.1021/ja00022a079
  69. C. M. Thomas, R. Mafua, B. Therrien, R. Rusanov, H. Stoeckli-Evans, and G. Suss-Fink, "New diphosphine ligands containing ethyleneglycol and aminoalcohol spacers for the rhodium-catalyzed carbonylation of methanol", Chemistry A European Journal, Vol. 8, pp. 3343-3352, 2002. https://doi.org/10.1002/1521-3765(20020802)8:15<3343::AID-CHEM3343>3.0.CO;2-Z
  70. D. K. Dutta, J. D. Woollins, A. M. Z. Slawin, D. Konwar, P. Das, M. Sharma, P. Bhattacharyya, and S. M. Aucott, "An alternative strategy to an electron rich phosphine based carbonylation catalyst", Dalton Trans., pp. 2674-2679, 2003.
  71. D. K. Dutta, J. D. Woollins, A. M. Z. Slawin, D. Konwar, M. Sharma, P. Bhattacharyya, and S. M. Aucott, "Rhodium(I) carbonyl complexes of mono selenium functionalized bis(diphenylphosphino) methane and bis(diphenylphosphino)amine chelating ligands and their catalytic carbonylation activity", J. Organomet. Chem., Vol. 691, pp. 1229-1234, 2006. https://doi.org/10.1016/j.jorganchem.2005.11.069
  72. G. W. Lamb, M. Clark, A. M. Z. Slawin, B. Williams, and L. Key, "Evaluation of C4 diphosphine ligands in rhodium catalysed methanol carbonylation under a syngas atmosphere: Synthesis, structure, stability and reactivity of rhodium(I) carbonyl and rhodium (III) acetyl intermediates", Dalton Trans., Vol. 47, pp. 5582-5589, 2007.
  73. D. K. Dutta, J. D. Woollins, A. M. Z. Slawin, A. L. Fuller, B. Deb, P. P. Sarmah, M. G. Pathak, and D. Konwar, "Rhodium(I) carbonyl complexes of chalcogen functionalized tripodal phosphines, [CH3C (CH2P(X) Ph-2)(3)] {X=O, S, Se} and their reactivity", J. Mol. Catal. A Chem., Vol. 313, pp. 100- 106, 2009. https://doi.org/10.1016/j.molcata.2009.08.007
  74. D. H. Nguyen, N. Lassauque, L. Vendier, S. Mallet- Ladeira, C. L. Berre, P. Serp, and P. Kalck, "Reductive elimination of anhydrides from anionic iodo acetyl carboxylato rhodium complexes", Eur. J. Inorg. Chem., Vol. 2014, pp. 326-336, 2014. https://doi.org/10.1002/ejic.201300933
  75. N. Lassauque, T. Davin, D. H. Nguyen, R. J. Adcock, Y. Coppel, C. L. Berre, P. Serp, L. Maron, and P. Kalck, "Direct involvement of the acetate ligand in the reductive elimination step of rhodiumcatalyzed methanol carbonylation", Inorg. Chem., Vol. 51, pp. 4-6, 2012. https://doi.org/10.1021/ic201574m
  76. J.-H. Hong, "Synthesis of N,N-Dimethylacetamide from carbonylation of trimethylamine by rhodium(I) complex under anhydrous condition", J. Chosun Natural Sci., Vol. 8, pp. 235-243, 2015. https://doi.org/10.13160/ricns.2015.8.4.235
  77. J.-H. Hong, "Two carbonylations of methyl iodide and trimethylamine to acetic acid and N,N-dimethylacetamide by rhodium(I) complex: Stability of rhodium(I) complex under anhydrous condition", Catalysts, Vol. 5, pp. 1969-1982, 2015. https://doi.org/10.3390/catal5041969
  78. A. Fulford, N. A. Bailey, H. Adams, and P. M. Maitlis, "The synthesis, properties, and crystal structure of nBu4N [Rh(CO)2(OAc)2], and the exchange of acetate, chloride, and iodide in nBu4N[Rh(CO)2(X)2]", J. Organomet. Chem., Vol. 417, pp. 139-147, 1991. https://doi.org/10.1016/0022-328X(91)80168-J
  79. B. L. Smith, G. P. Torrence, M. A. Murphy, and A. Aguilo, "The rhodium-catalyzed methanol carbonylation to acetic acid at low water concentrations: The effect of iodide and acetate on catalyst activity and stability", Journal of Molecular Catalysis, Vol. 39, pp. 115-136, 1987. https://doi.org/10.1016/0304-5102(87)80053-6
  80. T. C. Bartke, A. Haaland, and D. P. Novak, "The molecular structure of dimethylaminodichloroalane dimer determined by gas phase electron diffraction", Acta Chem. Scand. A, Vol. 29, pp. 273-276, 1975.
  81. S. Murahashi, H.Tsumoru, and Y. Tsuneo, "Palladium catalyzed amine exchange reaction of tertiary amines. Insertion of palladium (0) into carbon-hydrogen bonds", J. Am. Chem. Soc., Vol. 100, pp. 348-350, 1978. https://doi.org/10.1021/ja00469a093