Acknowledgement
Supported by : Seoul National University, University of Akron
References
- Nigam, N. C., Introduction to Random Vibrations, MIT Press, Cambridge, 1983.
- Caughey, T. K., "Derivation and Application of the Fokker-Planck Equation to Discrete Nonlinear Dynamic Systems Subjected to White Noise Excitation", Journal of the Acoustical Society of America, Vol. 35, No. 11, 1963, pp. 1683-1692. https://doi.org/10.1121/1.1918788
- Chang, J. S. and Cooper, G., "A Practical Difference Scheme for Fokker-Planck Equations", Journal of Computational Physics, Vol. 6, No. 1, 1970, pp. 1-16. https://doi.org/10.1016/0021-9991(70)90001-X
- Roberts, J. B., "First-Passage Time for Randomly Excited Non-linear Oscillators", Journal of Sound and Vibration, Vol. 109, No. 1, 1986, pp. 33-50. https://doi.org/10.1016/S0022-460X(86)80020-7
- Zorzano, M. P., Mais, H. and Vazquez, L., "Numerical Solution of Two Dimensional Fokker-Planck Equations", Applied Mathematics and Computation, Vol. 98, No. 2-3, 1999, pp. 109-117. https://doi.org/10.1016/S0096-3003(97)10161-8
- Langley, R. S., "A Finite-Element Method for the Statistics of Non-Linear Random Vibration", Journal of Sound and Vibration, Vol. 101, No. 1, 1985, pp. 41-54. https://doi.org/10.1016/S0022-460X(85)80037-7
- Langtangen, H. P., "Numerical-Solution of 1st Passage Problems in Random Vibrations", Siam Journal on Scientific Computing, Vol. 15, No. 4, 1994, pp. 977-996. https://doi.org/10.1137/0915059
- Spencer, B. F. and Bergman, L. A., "On the Numerical Solution of the Fokker-Planck Equation for Nonlinear Stochastic Systems", Nonlinear Dynamics, Vol. 4, No. 1993, pp. 357-362. https://doi.org/10.1007/BF00120671
- Wehner, M. F. and Wolfer, W. G., "Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations. II. Restricted Stochastic-Processes", Physical Review A, Vol. 28, No. 5, 1983, pp. 3003-3011. https://doi.org/10.1103/PhysRevA.28.3003
- Wehner, M. F. and Wolfer, W. G., "Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations", Physical Review A, Vol. 27, No. 5, 1983, pp. 2663-2670. https://doi.org/10.1103/PhysRevA.27.2663
- Wehner, M. F. and Wolfer, W. G., "Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations. III. Time and Functionally Dependent Coefficients", Physical Review A, Vol. 35, No. 4, 1987, pp. 1795-1801. https://doi.org/10.1103/PhysRevA.35.1795
- Kougioumtzoglou, I. A. and Spanos, P. D., "Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism", Journal of Engineering Mechanics, Vol. 140, No. 9, 2014, pp. 04014064. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000780
- Cai, G. Q. and Lin, Y. K., "Reliability of Nonlinear Structural Frame Under Seismic Excitation", Journal of Engineering Mechanics, Vol. 124, No. 8, 1998, pp. 852-856. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(852)
- Naess, A., Iourtchenko, D. and Batsevych, O., "Reliability of Systems with Randomly Varying Parameters by the Path Integration Method", Probabilistic Engineering Mechanics, Vol. 26, No. 1, 2011, pp. 5-9. https://doi.org/10.1016/j.probengmech.2010.05.005
- Wojtkiewicz, S. F., Bergman, L. A. and Spencer, B. F., "High Fidelity Numerical Solutions of the Fokker-Planck Equation", Structural Safety and Reliability, Vols. 1-3, 1998, pp. 933-940.
- Kumar, P. and Narayanan, S., "Solution of Fokker- Planck Equation by Finite Element and Finite Difference Methods for Nonlinear Systems", Sadhana, Vol. 31, No. 4, 2006, pp. 445-450. https://doi.org/10.1007/BF02716786
- Ghaboussi, J., "Generalized Differences in Direct Integration Methods for Transient Analysis", International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, 1987.
- Ballester, C. and Pereyra, V., "On the Construction of Discrete Approximation to Linear Differential Expressions", Mathematics of Computation, Vol. 21, No. 1967, pp. 297-302. https://doi.org/10.1090/S0025-5718-1967-0228167-8
- Collatz, L., The Numerical Treatment of Differential Equations, Springer-Verlag, Berlin, 1960.
- Chandrasekhar, S., "Stochastic Problems in Physics and Astronomy", Reviews of Modern Physics, Vol. 43, No. 1, 1943, pp. 1-89. https://doi.org/10.1103/RevModPhys.43.1
- Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, 1996.
- Naprstek, J. and Kral, R., "Finite Element Method Analysis of Fokker-Planck Equation in Stationary and Evolutionary Versions", Advances in Engineering Software, Vol. 72, No. 2014, pp. 28-38. https://doi.org/10.1016/j.advengsoft.2013.06.016