DOI QR코드

DOI QR Code

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity

변동풍속의 파워 스펙트럴 밀도에 관한 평가

  • Oh, Jong Seop (Dept. of Constructional Disaster Prevention, Hanlyo Univ.)
  • 오종섭 (한려대학교 건설방재공학과)
  • Received : 2017.07.04
  • Accepted : 2017.12.28
  • Published : 2017.12.31

Abstract

Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.

시공간적으로 불규칙하게 작용하는 변동 풍속 난류의 자료는 풍공학적으로 돌풍계수 평균풍속 변동 풍하중등의 계산에서 요구되지만, 내풍 및 사용성에 따른 동적응답의 평가에서는 변동 풍속의 파워 스펙트럴 밀도함수가 요구된다. 본 논문에서는 1987-2016.12.1일까지의 일순간최대풍속 자료를 확률과정으로 가정했고, 이 실측된 자료와 확률이론을 근거로 평균류방향 파워 스펙트럴 밀도 함수에 대한 기초적 자료를 얻고자 대표지점(6개 지점)을 선정했다. 선정된 각 지점에 대한 일순간최대풍속자료는 기상청으로부터 획득했다. 해석결과 본 논문에서 평가된 스펙트럼 모델은 저진동수 영역에서는 Solari, 고진동수 영역에서는 von Karman의 모델과 근접한 현상을 나타냈다.

Keywords

References

  1. Korea Meteorological Admi. (2017), (1987-2016), wind data.
  2. Binglan (2011), Wind Gust and Turbulence Statistics of Typhoons in South China, ACTA Meteo., (25), 113-127.
  3. Businger (1968), Flux-profile relationships in the atmo. surface layer, J. of Atmos. Sciences, v.28, 181-189.
  4. Davenport (1961), The spectr. of horiz. gustness near the ground in high winds, QJRMS 87(372), 194-211. https://doi.org/10.1002/qj.49708737208
  5. Dyer (1974), A review of flux-profile relationships, Boundary-Layer Meteorology, 7, 363-372. https://doi.org/10.1007/BF00240838
  6. Fitchtl (1970), Longit. & lateral spectra of turb. in the ABL at the KSC, J of Applied Meteo. 9(1), 51-63. https://doi.org/10.1175/1520-0450(1970)009<0051:LALSOT>2.0.CO;2
  7. Harris (1970), The nature of the wind, Proc. of the Seminar on the Mod. De. of WSS, ICE, London, 29-55.
  8. Kaimal (1973), Turb. spe. length scales & stru. param. in the stable surface layer, BL Mete. 4(1), 289-309.
  9. Kaimal (1972), Spectral characteristics of surface-layer turbulence, QJRMS 98(417), 563-589. https://doi.org/10.1002/qj.49709841707
  10. Kaimal (1976), Turbul. struc. in the convective bound. layer, J of the Atmos. Scien. 33(11), 2152-2169. https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
  11. Kaimal (1978), Horizo. velocity spectra in an unstable surface layer, J of the Atmosp. Scien. 35(1), 18-24. https://doi.org/10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2
  12. Kareem (1985a), Wind-induced respo. analysis of tension leg platforms, J of Struc. Engin. 111(1), 37-55 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:1(37)
  13. Karman (1948), Progress in the statis. theory of turbulence, Pro. of the NAS of the USA. 34(11), 530-539. https://doi.org/10.1073/pnas.34.11.530
  14. Kolmogorov (19941a), The local structure of turbu. in incompressible viscous fluid for very large Reynolds numbers, Russian in Dokl. Akad.Nauk SSSR, 30(4), Proc. R. Soc. Lond(1991), 434, 9-13
  15. Kolmogorov (1941b), Dissipation of energy in the locally isotropic turbulence, Russian in Dokl. Akad. Nauk SSSR, 32(1), Proc. R. Soc. Lond (1991), 434, 15-17
  16. Li & Kareem (2012), Model. typh. wind power spec. near sea surf. based on meas. in the South-Chin, J of WEIA 104-106, 565-576.
  17. Li, & Kareem (2015), A compa. study of field meas.. of the turbu. chara. of typh. J of WEIA 149, 49-66.
  18. Lulmey & Panofsky (1964), The stru. of atmo. turb., John Wiley & Sons, Inc., New York.
  19. Monin & Obukhov (1954), Basic laws of turbu. mixing in the SL of the atmo., Contribution of Geophys. Inst. of AS, USSR 151, 163-187.
  20. Monin (1962), Empirical data on turb. in the surface layer of the atmo., J of GR 67(8), 3103-3109.
  21. Olesen (1984), Modelling velocity spectra in the lower part of the PBL, BLM 29(3), 285-312.
  22. Schotz (1980), Wind characte. at the Boulder atmosp. observatory, Boundary-Layer Meteorology, 19, 155-164 https://doi.org/10.1007/BF00117217
  23. Simiu (1974), Wind spectra and dynamic alongwind response, J od SD 100(9), 1897-1910.
  24. Simiu & Scanlan (1996), Wind effects on structure: Fundamentals and applications to design, Wiely.
  25. Solari (1987), Turbulence modeling for gust loading, J of SD 113(7), 1550-1569.
  26. Solari (1993), Gust buffeting, I: peak wind velocity & equivalent pressure, J of SD 119(2), 365-382.
  27. Solar & Piccardo (2001), Proba. 3-D turb. mode. for gust buffeting of stru., Prob. Engi. Mech. 16(1), 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2
  28. Teunissen (1980), Structure of mean winds & turb. in the PBL over rural terrain, BLM18(2), 187-221.
  29. Tieleman (1995), University of velocity spectra, J of WEAI 56(1), 55-69.