DOI QR코드

DOI QR Code

Surface Analysis of Plasma Pretreated Sapphire Substrate for Aluminum Nitride Buffer Layer

  • Jeong, Woo Seop (Department of Materials Science & Engineering, Korea University) ;
  • Kim, Dae-Sik (Department of Materials Science & Engineering, Korea University) ;
  • Cho, Seung Hee (Department of Materials Science & Engineering, Korea University) ;
  • Kim, Chul (Department of Materials Science & Engineering, Korea University) ;
  • Jhin, Junggeun (LED Procurement Team, LG Innotek) ;
  • Byun, Dongjin (Department of Materials Science & Engineering, Korea University)
  • Received : 2017.11.02
  • Accepted : 2017.11.28
  • Published : 2017.12.27

Abstract

Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after $N_2$ plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, $N_2$ plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with $N_2$ plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from $Al_2O_3$ to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface $N_2$ plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.

Keywords

References

  1. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, IEEE Photon. Technol. Lett., 18, 1152 (2006). https://doi.org/10.1109/LPT.2006.874737
  2. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., 48, 353 (1986). https://doi.org/10.1063/1.96549
  3. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, Appl. Phys. Lett., 84, 855 (2004). https://doi.org/10.1063/1.1645992
  4. S. Kim, B. Kim, S. Jang, A. Kim, J. Park and D. Byun, J. Cryst. Growth, 326, 200 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.097
  5. D.-S. Kim, W. S. Jeong, H. Ko, J.-S. Lee and D. Byun, Thin Solid Films, 641, 2 (2017). https://doi.org/10.1016/j.tsf.2017.06.042
  6. X. J. Ning, F. R. Chien, and P. Pirouz, J. Mater. Res., 11, 580 (1996). https://doi.org/10.1557/JMR.1996.0071
  7. H. Amano, I. Akasaki, K. Hiramatsu, N. Koide and N. Sawaki, Thin Solid Film, 163, 415 (1988). https://doi.org/10.1016/0040-6090(88)90458-0
  8. S. Nakamura, Jpn. J. Appl. Phys., 30, 1705 (1991). https://doi.org/10.1143/JJAP.30.1705
  9. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, Appl. Phys. Lett., 89, 161105 (2006). https://doi.org/10.1063/1.2363148
  10. B. Beaumont, Ph. Vennegues and P. Gibart, Phys. Status Solidi B, 227, 1 (2001). https://doi.org/10.1002/1521-3951(200109)227:1<1::AID-PSSB1>3.0.CO;2-Q
  11. J. Park, D.-S. Kim, W. S. Jeong, S. H. Cho, C. Kim, H.-A Ko, D. Lee and D. Byun, Mater. Sci. Tech. Jpn, 54, 112 (2017).
  12. M. Bo kowski, I. Grzegory, J. Borysiuk, G. Kamler, B. ucznik, M. Wroblewski, P. Kwiatkowski, K. Jasik, S. Krukowski and S. Porowski, J. Cryst. Growth, 281, 11 (2005). https://doi.org/10.1016/j.jcrysgro.2005.03.008
  13. A. Celebioglu, S. Vempati, C. Ozgit-Akgun, N. Biyikliab and T. Uyar, RSC Adv., 4, 61698 (2014). https://doi.org/10.1039/C4RA12073F
  14. W. Lu, Y. Iwasa, Y. Ou, D. Jinno, S. Kamiyama, P. M. Petersen and H. Ou, RSC Adv., 7, 8090 (2017). https://doi.org/10.1039/C6RA27281A
  15. L. Rosenberger, R. Baird, E. McCullen, G. Auner and G. Shreve, Surf. Interface Anal., 40, 1254 (2008). https://doi.org/10.1002/sia.2874
  16. Y. Cho, Y. Kim, E. R. Weber, S. Ruvimov and Z. Liliental-Weber, J. Appl. Phys., 85, 7909 (1999). https://doi.org/10.1063/1.370606
  17. G. Namkoong, W. A. Doolittle, A. S. Brown, M. Losurdo, P. Capezzuto and G. Bruno, J. Vac. Sci. Technol. B, 20, 1221 (2002). https://doi.org/10.1116/1.1470514
  18. G. V. Soares, K. P. Bastos, R. P. Pezzi, L. Miotti, C. Driemeier, I. J. R. Baumvol, C. inkle and G. Lucovsky, Appl. Phys. Lett., 84, 4992 (2004). https://doi.org/10.1063/1.1763230
  19. F. Kienberger, V.P. Pastushenko, G. Kada, T. Puntheeranurak, L. Chtcheglova, C. Riethmueller, C. Rankl, A. Ebner and P. Hinterdorfer, Ultramicroscopy, 106, 822 (2006). https://doi.org/10.1016/j.ultramic.2005.11.013
  20. A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz and Y. E. Korchev, Biophys. J., 94, 4089 (2008). https://doi.org/10.1529/biophysj.107.112524