DOI QR코드

DOI QR Code

Induction of Apoptosis with Moringa oleifera Fruits in HCT116 Human Colon Cancer Cells Via Intrinsic Pathway

  • Guon, Tae-Eun (College of Natural Sciences, Duksung Women's University) ;
  • Chung, Ha Sook (College of Natural Sciences, Duksung Women's University)
  • Received : 2017.06.02
  • Accepted : 2017.07.21
  • Published : 2017.12.29

Abstract

Moringa oleifera Lam (M. oleifera, Moringaceae) is a tree of the Moringaceae family that can reach a height of between 5 and 10 m. The current paper presents cytotoxic effect of M. oleifera fruits and its flavonoids 1 and 2. The viability of HCT116 human colon cancer cells were 38.5% reduced by $150{\mu}g/mL$ of ethanolic extracts in a concentration-dependent manner; in addition, we observed the apoptotic features of cell shrinkage and decreased cell size. Bcl-2 family proteins were regulated as determined by Western blotting analysis, suggesting that M. oleifera fruits and their flavonoids 1 and 2 induced apoptosis through an intrinsic pathway. Based on our findings, 70% ethanolic extracts of M. oleifera fruits and flavonoids 1 and 2 might be useful as cytotoxic agents in colorectal cancer therapy.

Keywords

References

  1. Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A. H. Phytother. Res. 2007, 21, 17-25. https://doi.org/10.1002/ptr.2023
  2. Bharali, R.; Tabassum, J.; Azad, M. R. Asian Pac. J. Cancer Prev. 2003, 4, 131-139.
  3. Guevara, A. P.; Vargas, C.; Sakurai, H.; Fujiwara, Y.; Hashimoto, K.; Maoka, T.; Kozuka, M.; Ito, Y.; Tokuda, H.; Nishino, H. Mutat. Res. 1999, 440, 181-188. https://doi.org/10.1016/S1383-5718(99)00025-X
  4. Siddhuraju, P.; Becker, K. J. Agric. Food Chem. 2003, 51, 2144- 2155. https://doi.org/10.1021/jf020444+
  5. Sreelatha, S.; Jeyachitra, A.; Padma, P. R. Food Chem. Toxicol. 2011, 49, 1270-1275. https://doi.org/10.1016/j.fct.2011.03.006
  6. Budda, S.; Butryee, C.; Tuntipopipat, S.; Rungsipipat, A.; Wangnaithum, S.; Lee, J. S.; Kupradinun, P. Asian Pac. J. Cancer Prev. 2011, 12, 3221-3228.
  7. Stoha, S. J.; Hartman, M. J. Phytother. Res. 2015, 29, 796-804. https://doi.org/10.1002/ptr.5325
  8. Krishnaswamy, K.; Raghuramulu, N. Indian J. Med. Res. 1998, 108, 167-181.
  9. Armstrong, B.; Doll, R. Int. J. Cancer 1975, 15, 617-631. https://doi.org/10.1002/ijc.2910150411
  10. Voorrips, L. E.; Goldbohm, R. A.; Van Poppel, G.; Sturmans, F.; Hermus, R. J.; Van den Brandt, P. A. Am. J. Epidemiol. 2000, 152, 1081- 1092. https://doi.org/10.1093/aje/152.11.1081
  11. Steller, H. Science 1995, 267, 1445-1449. https://doi.org/10.1126/science.7878463
  12. Reed, J. C. Cancer J. Sci. Am. 1998, 4, S8-S14.
  13. Reed, J. C. Oncology 2004, 18, 11-20.
  14. Martinvalet, D.; Zhu, P.; Lieberman, J. Immunity 2005, 22, 355- 370. https://doi.org/10.1016/j.immuni.2005.02.004
  15. Adams, J. M.; Cory, S. Science 1998, 281, 1322-1326. https://doi.org/10.1126/science.281.5381.1322
  16. Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D, Mitchell, J. B. Cancer Res. 1987, 47, 936-942.
  17. Visagie, M. H.; Joubert, A. M. Mol. Cell Biochem. 2011, 357, 343- 352. https://doi.org/10.1007/s11010-011-0905-3
  18. Ryu, M. J.; Chung, H. S. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 92-101 https://doi.org/10.1007/s11626-014-9806-6
  19. Devisetti, R.; Sreerama, Y. N.; Bhattacharya, S. J. Food Sci. Technol. 2016, 53, 649-657. https://doi.org/10.1007/s13197-015-1962-5
  20. Atawodi, S. E.; Atawodi, J. C.; Idakwo, G. A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R. W. J. Med. Food 2010, 13, 710-716. https://doi.org/10.1089/jmf.2009.0057
  21. Verma, A. R.; Vijayakumar, M.; Mathela, C. S.; Rao, C. V. Food Chem. Toxicol. 2009, 47, 2196-2201. https://doi.org/10.1016/j.fct.2009.06.005
  22. Manguro, L. O.; Lemmen, P. Nat. Prod. Res. 2007, 21, 56-68. https://doi.org/10.1080/14786410601035811
  23. Oboh, G.; Ademiluyi, A. O.; Ademosun, A. O.; Olasehinde, T. A.; Oyeleye, S. I.; Boligon, A. A.; Athayde, M. L. Biochem. Res. Int. 2015, 2015, 175950.
  24. Karthivashan, G.; Tangestani Fard, M.; Arulselvan, P.; Abas. F.; Fakurazi, S. J. Food Sci. 2013, 78, C1368-C1375. https://doi.org/10.1111/1750-3841.12233
  25. Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Phytochemistry 2011, 72, 791-795. https://doi.org/10.1016/j.phytochem.2011.02.021
  26. Jintana, T.; Naoto, Y.; Perayot, P.; Penpun, W.; Tatsuro, Y.; Naoki, I.; Masami, I.; Auayporn, A. Trop. J. Pharm Res. 2017, 16, 371-378. https://doi.org/10.4314/tjpr.v16i2.16
  27. Shin, S. W.; Lee, Y. H.; Moon, S. R.; Koo, I. H.; Hong, H. J.; Shin, E. J.; Lee, M. Y.; Park, J. H.; Chung, H. S. J. Kor. Soc. Appl. Biol. Chem. 2010, 53, 716-723. https://doi.org/10.3839/jksabc.2010.108
  28. Findley, H. W.; Gu, L.; Yeager, A. M.; Zhou, M. Blood. 1997, 89, 2986-2993.
  29. Nagappan, A.; Park, K. I.; Park, H. S.; Kim, J. A.; Hong, G. E.; Kang, S. R.; Lee, D. H.; Kim, E. H.; Lee, W. S.; Won, C. K.; Kim, G. S. Food Chem. 2012, 135, 1920-1928. https://doi.org/10.1016/j.foodchem.2012.06.050
  30. Oliver F. J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M. C.; de Murcia, G.; Murcia, J. M. J. Biol. Chem.1998, 273, 33533-33539. https://doi.org/10.1074/jbc.273.50.33533

Cited by

  1. Procyanidin C1 Activates the Nrf2/HO-1 Signaling Pathway to Prevent Glutamate-Induced Apoptotic HT22 Cell Death vol.20, pp.1, 2019, https://doi.org/10.3390/ijms20010142
  2. Protective Effect of Phenolic Compounds Isolated from Mugwort ( Artemisia argyi ) against Contrast-Induced Apoptosis in Kidney Epithelium Cell Line LLC-PK1 vol.24, pp.1, 2017, https://doi.org/10.3390/molecules24010195
  3. Preparation of Herbal Formulation for Inflammatory Bowel Disease Based on In Vitro Screening and In Vivo Evaluation in a Mouse Model of Experimental Colitis vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030464
  4. Multiple Targets of 3-Dehydroxyceanothetric Acid 2-Methyl Ester to Protect Against Cisplatin-Induced Cytotoxicity in Kidney Epithelial LLC-PK1 Cells vol.24, pp.5, 2017, https://doi.org/10.3390/molecules24050878
  5. Cytotoxic Lactones from the Pericarps of Litsea japonica vol.25, pp.1, 2019, https://doi.org/10.20307/nps.2019.25.1.23
  6. Hypoxylonol F Isolated from Annulohypoxylon annulatum Improves Insulin Secretion by Regulating Pancreatic β-cell Metabolism vol.9, pp.8, 2017, https://doi.org/10.3390/biom9080335
  7. Anti-Angiogenic Effect of Asperchalasine A Via Attenuation of VEGF Signaling vol.9, pp.8, 2017, https://doi.org/10.3390/biom9080358
  8. Neuroprotective Effects of Tetrahydrocurcumin against Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells vol.25, pp.1, 2020, https://doi.org/10.3390/molecules25010144
  9. Analysis and Identification of Active Compounds from Salviae miltiorrhizae Radix Toxic to HCT-116 Human Colon Cancer Cells vol.10, pp.4, 2017, https://doi.org/10.3390/app10041304
  10. Bioactivity-based analysis and chemical characterization of cytotoxic compounds from a poisonous mushroom, Amanita spissacea, in human lung cancer cells in vitro vol.35, pp.4, 2017, https://doi.org/10.1080/14786419.2019.1586699