DOI QR코드

DOI QR Code

소양강댐 유역에 대한 지표수문모형의 구축

Development of Land Surface Model for Soyang river basin

  • 이재현 (홍익대학교 토목공학과) ;
  • 조희대 (미국 케네소주립대학교 서던폴리테크닉공과대학 토목건설공학과) ;
  • 최민하 (성균관대학교 수자원대학원 수자원학과) ;
  • 김동균 (홍익대학교 토목공학과)
  • Lee, Jaehyeon (Department of Civil Engineering, Hongik University) ;
  • Cho, Huidae (Department of Civil and Construction Engineering, Southern Polytechnic College of Engineering and Engineering Technology, Kennesaw State University) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Kim, Dongkyun (Department of Civil Engineering, Hongik University)
  • 투고 : 2017.03.22
  • 심사 : 2017.10.18
  • 발행 : 2017.12.31

초록

본 연구에서는 소양강댐 유역의 수문기상인자들의 시공간적 변동성을 명확히 파악하기 위하여 지표해석모형을 구축하였다. 지표해석 모형으로는 Variable Infiltration Capacity (VIC) 모형을 사용하였으며, 모형의 공간 해상도는 10 km, 시간 해상도는 1일로 정하였다. 2007~2010년 기간의 일유량자료를 바탕으로 Isolated Particle Swarm Optimization 알고리즘을 사용하여 모형의 7개 매개변수를 보정하였고, 2011~2014년 기간의 일유량자료를 사용하여 모형을 검증하였다. 보정된 모형은 보정기간과 검증기간 모두에 대하여 0.90의 Nash-Sutcliffe Coefficient값과 0.95의 상관계수를 보였다. 소양강댐유역에 대하여 산출된 인자들은 여름철에 강우가 집중되어있는 우리나라의 계절적인 특성과 기온변화로 인한 장 단파 복사량의 변화와, 지표면 온도의 변화, 이로 인해 피복층에서의 증발과 식생 증산의 변화가 고려되어 총 증발산이 변화하는 경향이 잘 반영된 것으로 나타났다. 산출된 수문인자를 검증하기 위하여 지상관측토양수분자료와 비교하였다. 겨울철을 제외한 4~11월의 비교결과 두 자료의 추세선의 기울기는 1.087로 나타났고, 상관계수는 0.723의 값을 나타냈다. 이러한 본 연구의 결과는 지표해석모형이 우리나라 주요 댐 유역의 수문기상인자의 시공간적인 변화를 정확히 파악하는데 활용될 수 있으며, 나아가서는 더욱 정밀하고 효율적인 수자원계획을 수립하는 데에도 활용될 수 있다는 점을 시사한다.

Land Surface Model (LSM) was developed for the Soyang river basin located in Korean Peninsula to clarify the spatio-temporal variability of hydrological weather parameters. Variable Infiltration Capacity (VIC) model was used as a LSM. The spatial resolution of the model was 10 km and the time resolution was 1 day. Based on the daily flow data from 2007 to 2010, the 7 parameters of the model were calibrated using the Isolated Particle Swarm Optimization algorithm and the model was verified using the daily flow data from 2011 to 2014. The model showed a Nash-Sutcliffe Coefficient of 0.90 and a correlation coefficient of 0.95 for both calibration and validation periods. The hydrometeorological variables estimated for the Soyang river basin reflected well the seasonal characteristics of summer rainfall concentration, the change of short and shortwave radiation due to temperature change, the change of surface temperature, the evaporation and vegetation increase in the cover layer, and the corresponding change in total evapotranspiration. The model soil moisture data was compared with in-situ soil moisture data. The slope of the trend line relating the two data was 1.087 and correlation coefficient was 0.723 for the Spring, Summer and Fall season. The result of this study suggests that the LSM can be used as a powerful tool in developing precise and efficient water resources plans by providing accurate understanding on the spatio-temporal variation of hydrometeorological variables.

키워드

참고문헌

  1. Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P. (2005). "Twentieth-century drought in the conterminous United States." Journal of Hydrometeorology, Vol. 6, No. 6, pp. 985-1001. https://doi.org/10.1175/JHM450.1
  2. Arnold, J. G., Williams, J. R., Nicks, A. D., and Sammons, N. B. (1990). SWRRB; a basin scale simulation model for soil and water resources management
  3. Bae, D. H., Son, K. H., and Kim, H. (2013). "Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea." Journal of Korea Water Resources Association, Vol. 46, No. 3, pp. 287-299. https://doi.org/10.3741/JKWRA.2013.46.3.287
  4. Bae, D. H., Son, K. H., Ahn, J. B., Hong, J. Y., Kim, G. S., Chung, J. S., Jung, U. S., and Kim, J. K. (2012). "Development of real-time drought monitoring and prediction system on Korea & East Asia region." Atmosphere, Vol. 22, No. 2, pp. 267-277. https://doi.org/10.14191/Atmos.2012.22.2.267
  5. Blondin, C. (1991). "Parameterization of land-surface processes in numerical weather prediction." In Land Surface Evaporation, Springer New York, pp. 31-54.
  6. Bras, R. L. (1990). Hydrology: an introduction to hydrologic science. Addison Wesley Publishing Company.
  7. Burnash, R. J., Ferral, R. L., and McGuire, R. A. (1973). A generalized streamflow simulation system, conceptual modeling for digital computers.
  8. Chen, F., Crow, W. T., Starks, P. J., and Moriasi, D. N. (2011). "Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture." Advances in Water Resources, Vol. 34, No. 4, pp. 526-536. https://doi.org/10.1016/j.advwatres.2011.01.011
  9. Chen, F., Janjic, Z., and Mitchell, K. (1997). "Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model." Boundary-Layer Meteorology, Vol. 85, No. 3, pp. 391-421. https://doi.org/10.1023/A:1000531001463
  10. Cho, H., Kim, D., Olivera, F., and Guikema, S. D. (2011). "Enhanced speciation in particle swarm optimization for multi-modal problems." European Journal of Operational Research, Vol. 213, No. 1, pp. 15-23. https://doi.org/10.1016/j.ejor.2011.02.026
  11. Choi, M., and Jacobs, J. M. (2008). "Temporal variability corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) surface soil moisture: case study in Little River region, Georgia, US." Sensors, Vol. 8, No. 4, pp. 2617-2627. https://doi.org/10.3390/s8042617
  12. Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D., and Meng, J. (2003). "Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project." Journal of Geophysical Research: Atmospheres, Vol. 108, 8842, doi: 10.1029/2002JD003118.
  13. Crosson, W. L., Laymon, C. A., Inguva, R., and Schamschula, M. P. (2002). "Assimilating remote sensing data in a surface fluxsoil moisture model." Hydrological Processes, Vol. 16, No. 8, pp. 1645-1662. https://doi.org/10.1002/hyp.1051
  14. Dai, Y., Zeng, X., Dickinson, R. E., and Baker, I. (2003). "The common land model." Bulletin of the American Meteorological Society, Vol. 84, No. 8, pp. 1013. https://doi.org/10.1175/BAMS-84-8-1013
  15. Dickinson, R. E. (1984). "Modeling evapotranspiration for threedimensional global climate models." Climate processes and Climate Sensitivity, pp. 58-72.
  16. Dickinson, R. E. (1986). Biosphere/atmosphere transfer scheme (BATS) for the NCAR community climate model. Technical report.
  17. Dickinson, R. E., Kennedy, P. J., and Henderson-Sellers, A. (1993). "Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model." National Center for Atmospheric Research, Climate and Global Dynamics Division.
  18. Ducroude, N., Laval, K., and Perrier, A. (1993). "A new set of parameterizations of the hydrologic exchanges at the landatmosphere interface within the LMD atmospheric general circulation model." Journal of Climate, Vol. 6, No. 2, pp. 248-273. https://doi.org/10.1175/1520-0442(1993)006<0248:SANSOP>2.0.CO;2
  19. Famiglietti, J. S., and Wood, E. F. (1994). "Multiscale modeling of spatially variable water and energy balance processes." Water Resources Research, Vol. 30, No. 11, pp. 3061-3078. https://doi.org/10.1029/94WR01498
  20. Fatichi, S., Ivanov, V. Y., and Caporali, E. (2011). "Simulation of future climate scenarios with a weather generator." Advances in Water Resources, Vol. 34, No. 4, pp. 448-467. https://doi.org/10.1016/j.advwatres.2010.12.013
  21. Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). "Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling." International Journal of Climatology, Vol. 27, No. 12, pp. 1547-1578. https://doi.org/10.1002/joc.1556
  22. Franchini, M., and Pacciani, M. (1991). "Comparative analysis of several conceptual rainfall-runoff models." Journal of Hydrology, Vol. 122, No. 1-4, pp. 161-219. https://doi.org/10.1016/0022-1694(91)90178-K
  23. Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., and Goodrich, D. C. (1998). "Integration of soil moisture remote sensing and hydrologic modeling using data assimilation." Water Resources Research, Vol. 34, No. 12, pp. 3405-3420. https://doi.org/10.1029/1998WR900001
  24. IPCC (Intergovernmental Panel on Climate Change) (2013). Climate change 2013: the physical science basis.
  25. Kilsby, C. G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., James, P., Smith, A., and Wilby, R. L. (2007). "A daily weather generator for use in climate change studies." Environmental Modelling & Software, Vol. 22, No. 12, pp. 1705-1719. https://doi.org/10.1016/j.envsoft.2007.02.005
  26. Kim, D., Cho, H., Onof, C., and Choi, M. (2016). "Let-It-Rain: a web application for stochastic point rainfall generation at ungaged basins and its applicability in runoff and flood modeling." Stochastic Environmental Research and Risk Assessment, pp. 1-21.
  27. Kim, J. G., Kwon, H. H., and Kim, D. (2017). "A hierarchical Bayesian approach to the modified Bartlett-Lewis rectangular pulse model for a joint estimation of model parameters across stations." Journal of Hydrology, Vol. 544, pp. 210-223. https://doi.org/10.1016/j.jhydrol.2016.11.031
  28. Koster, R. D., and Suarez, M. J. (1994). "The components of a 'SVAT' scheme and their effects on a GCM's hydrological cycle." Advances in Water Resources, Vol. 17, No. 1-2, pp. 61-78. https://doi.org/10.1016/0309-1708(94)90024-8
  29. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for general circulation models." Journal of Geophysical Research: Atmospheres, Vol. 99, No. D7, pp. 14415-14428. https://doi.org/10.1029/94JD00483
  30. Lohmann, D., Nolte-Holube, R., and Raschke, E. (1996). "A largescale horizontal routing model to be coupled to land surface parametrization schemes." Tellus A, Vol. 48, No. 5, pp. 708-721. https://doi.org/10.3402/tellusa.v48i5.12200
  31. Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P. (1998). "Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model." Hydrological Sciences Journal, Vol. 43, No. 1, pp. 131-141. https://doi.org/10.1080/02626669809492107
  32. Mahrt, L., and Pan, H. (1984). "A two-layer model of soil hydrology." Boundary-Layer Meteorology, Vol. 29, No. 1, pp. 1-20. https://doi.org/10.1007/BF00119116
  33. Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Lettenmaier, D. P., Marshall, C. H., Entin, J. K., Pan, M., Shi, W., Koren, V., Meng, J., Ramsay, B. H., and Bailey, A. A. (2004). "The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system." Journal of Geophysical Research: Atmospheres, Vol. 109, D07S90, doi: 10.1029/203JD003823.
  34. Monteith, J. L., and Unsworth, M. H. (1990). Principles of environmental physics, Edited by Arnold, S.E., London, UK.
  35. Moran, M. S., Peters-Lidard, C. D., Watts, J. M., and McElroy, S. (2004). "Estimating soil moisture at the watershed scale with satellite-based radar and land surface models." Canadian Journal of Remote Sensing, Vol. 30, No. 5, pp. 805-826. https://doi.org/10.5589/m04-043
  36. Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E. F. (1997). "Streamflow simulation for continental-scale river basins." Water Resources Research, Vol. 33, No. 4, pp. 711-724. https://doi.org/10.1029/96WR03517
  37. Nijssen, B., Schnur, R., and Lettenmaier, D. P. (2001). "Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980-93." Journal of Climate, Vol. 14, No. 8, pp. 1790-1808. https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
  38. Pauwels, V., Hoeben, R., Verhoest, N. E., and De Troch, F. P. (2001). "The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for smallscale basins through data assimilation." Journal of Hydrology, Vol. 251, No. 1, pp. 88-102. https://doi.org/10.1016/S0022-1694(01)00440-1
  39. Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  40. Rudiger, C., Calvet, J. C., Gruhier, C., Holmes, T. R., De Jeu, R. A., and Wagner, W. (2009). "An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France." Journal of Hydrometeorology, Vol. 10, No. 2, pp. 431-447. https://doi.org/10.1175/2008JHM997.1
  41. Sellers, P. J., Mintz, Y. C. S. Y., Sud, Y. E. A., and Dalcher, A. (1986). "A simple biosphere model (SiB) for use within general circulation models." Journal of the Atmospheric Sciences, Vol. 43, No. 6, pp. 505-531. https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
  42. Son, K. H., Bae, D. H., and Chung, J. S. (2011). "Drought analysis and assessment by using land surface model on South Korea." Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 667-681. https://doi.org/10.3741/JKWRA.2011.44.8.667
  43. Son, K. H., Lee, J. D., and Bae, D. H. (2010). "The application assessment of global hydrologic analysis models on South Korea." Journal of Korea Water Resources Association, Vol. 43, No. 12, pp. 1063-1074. https://doi.org/10.3741/JKWRA.2010.43.12.1063
  44. Son, K. H., Lee, M. H., and Bae, D. H. (2012). "Runoff analysis and assessment using land surface model on East Asia." Journal of Korea Water Resources Association, Vol. 45, No. 2, pp. 165-178. https://doi.org/10.3741/JKWRA.2012.45.2.165
  45. Stocker, T. F., and Raible, C. C. (2005). "Climate change: water cycle shifts gear." Nature, Vol. 434, No. 7035, pp. 830-833. https://doi.org/10.1038/434830a
  46. Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J. (1991). "A simplified biosphere model for global climate studies." Journal of Climate, Vol. 4, No. 3, pp. 345-364. https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2
  47. Yang, Z. L., and Dickinson, R. E. (1996). "Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance." Global and Planetary Change, Vol. 13, No. 1, pp. 117-134. https://doi.org/10.1016/0921-8181(95)00041-0