DOI QR코드

DOI QR Code

Electric Load Forecasting using Data Preprocessing and Fuzzy Logic System

데이터 전처리와 퍼지 논리 시스템을 이용한 전력 부하 예측

  • Bang, Young-Keun (Dept. of Electrical Engineering, Kangwon National University) ;
  • Lee, Chul-Heui (Dept. of Electrical and Electronic Engineering, Kangwon National University)
  • Received : 2017.07.25
  • Accepted : 2017.11.07
  • Published : 2017.12.01

Abstract

This paper presents a fuzzy logic system with data preprocessing to make the accurate electric power load prediction system. The fuzzy logic system acceptably treats the hidden characteristic of the nonlinear data. The data preprocessing processes the original data to provide more information of its characteristics. Thus the combination of two methods can predict the given data more accurately. The former uses TSK fuzzy logic system to apply the linguistic rule base and the linear regression model while the latter uses the linear interpolation method. Finally, four regional electric power load data in taiwan are used to evaluate the performance of the proposed prediction system.

Keywords

References

  1. C. M. Pereira, N. N. Almeida, M. L. F. Velloso, "Fuzzy modeling to forecaste an electric load time series", Procedia Computer Science, vol. 55, pp. 395-404, 2015. https://doi.org/10.1016/j.procs.2015.07.089
  2. C. C. Hsu, C. Y. Chen, "Regional load forecasting in Taiwan-applications of artificial neural networks", Energy Conversion and Management, vol. 44, pp. 1941-1949, 2003. https://doi.org/10.1016/S0196-8904(02)00225-X
  3. J. F. Chen, W. M. Wang, C. M. Huang, "Analysis of and adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting", Electric Power Systems Research, vol. 34, pp. 187-196, 1995. https://doi.org/10.1016/0378-7796(95)00977-1
  4. J. H. Puiar, "Fuzzy Ideology based Long Term Load Forecasting:, World Academy of Science, Engineering and Technology, vol. 40, pp. 640-645, 2010.
  5. D. Ali, M. Yohanna, M. I. Puwu, B. M. Garkida, "Long-term load forecast modelling using a fuzzy logic approach", Pacific Science Review A: Natural Science and Engineering, vol. 18, pp. 123-127, 2016. https://doi.org/10.1016/j.psra.2016.09.011
  6. J. Dhillon, S. A. Rahman, S. U. Ahmad, M. J. Hossain, "Peak Electricity Load Forecasting Using Online Support Vector Regression", 2016 IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1-5, 2016.
  7. E. B. UI, Islam, "Comparison of Conventional and Modern Load Forecasting Techniques Based on Artificial Intelligence and Expert Systems", IJCSI, vol. 8, pp. 504-513, 2011.
  8. G. Mahalakshmi, S. Sridevi, S. Rajaram, "A Survey on Forecasting of Time Series Data", 2016 International Conference on Computing Technologies and Intelligent Data Engineering, pp. 1-8, 2016.
  9. H. K. Alfares, M. Nazeerudduin, "Electric load forecasting: literature survey and classification of methods", vol. 33, pp. 23-34, 2002. https://doi.org/10.1080/00207720110067421
  10. J. M. Mendal, Uncertain Rule-based Fuzzy Logic System: Introduction and New Directions, Prentice-Hall, Upper Saddle River, Nj 07458, 2001.
  11. Y. K. Bang, C. H. Lee, "Fuzzy Time Series Prediction using Hierarchical Clustering Algorithms", Expert Systems with Applications, vol. 38, pp. 4312-4325, 2011. https://doi.org/10.1016/j.eswa.2010.09.100
  12. Y. K. Bang, J. S. Shim, "Electric Power Load Forecasting using Fuzzy Prediction System", KIEE, vol. 62, pp. 1590-1597, 2013.
  13. S. Aghabozorgi, A. S. Shirkhorshidi, T. Y. Wah, "Time- Series clustering-A decade review", vol. 53, pp. 16-38, 2015. https://doi.org/10.1016/j.is.2015.04.007