DOI QR코드

DOI QR Code

저층수 배사관 내 유입된 사석 배출능력에 대한 연구

A Experimental Study on Exclusion Ability of Riprap into Bypass Pipe

  • 투고 : 2016.12.06
  • 심사 : 2017.01.04
  • 발행 : 2017.02.01

초록

국내 중소하천의 횡단구조물인 보 또는 낙차공은 대부분 고정식 콘크리트 구조물이며, 저층수의 배제가 쉽지 않다. 횡단구조물로 인해 유사가 퇴적되며, 유사에 흡착한 오염물들이 그대로 하천의 바닥을 오염시키고 있다. 이에 저층수 및 퇴적유사에 대한 관심이 증가하고 있는 실정이며, 이러한 대안의 하나로 횡단구조물 상류와 하류를 하상 아래로 연결시키는 구조물로써, 보 상류 저층의 물 및 유사 배제를 목적으로 저층수배출관을 설치하는 방안이 있다. 그러나 사석이 유입되고, 배제 되지 않을 경우 효율성이 크게 저하될 가능성이 있다. 이에 본 연구에서는 저층수 배출관 내 사석을 배제할 수 있는 능력에 대한 연구를 수행하였다. 사석과 거동이 유사한 유사(sediment)의 한계조건(critical condition) 중 한계전단력(critical shear stress) 유도과정과 달랑베르의 원리(d'Alembert principle)를 응용하여 이동 중인 사석이 배제될 수 있는 조건(${\tau}_c{^*}$)을 유도하였다. 그러나 저층수 배출관 내 유입된 사석은 정지상태가 아닌 이동 중이므로, Lagrangian 기법을 활용하여 수리실험에서 도출된 유속으로 상대속도(relative velocity)를 제시하였다. 수리실험은 축척효과(scale effect)를 최소화하기 위해 폭이 5.0 m이고, 높이가 1.0 m인 광폭 개수로를 제작하였으며, 사용된 사석은 가공된 완전 구형을 사용하였다. 실험 결과 유속과 구형 입자 속도와의 비가 0.5~0.7 사이로 나타났으며, 이러한 결과를 유도된 식에 적용하여, 최종적으로 사석이 배제되는 조건을 도출하게 되었다. 구간은 입자레이놀즈수($Re_p$)와 무차원 한계 전단력(${\tau}_c{^*}$)에 따라 크게 3가지로 구분되었다. 배제 구간(exclusion section), 확률적 배제 구간(probabilistic exclusion section), 비배제 구간(no exclusion section)이다. 본 연구결과는 횡단구조물의 저층수 배출관 설계시 유용한 기초 정보를 제공할 수 있을 것이다.

There are various transversal structures (small dams or drop structures) in median and small streams in Korea. Most of them are concrete structures and it is so hard to exclude low-level water. Unless drainage valves and/or gates would not be installed near bottom of bed, sediment from upstream should be deposited and also contaminants attached to the sediments would devastatingly threaten the water quality and ecosystem. One of countermeasures for such problem is the bypass pipe installed underneath the transversal structure. However, there is still issued whether it would be workable if the gravels and/or stones would roll into and be not excluded. Therefore, in this study, the conditions to exclude the rip stone which enter into the bypass pipe was reviewed. Based on sediment transport phenomenon, the behavior of stones was investigated with the concepts from the critical shear stress of sediment and d'Alembert principle. As final results, the basis condition (${\tau}_c{^*}$) was derived using the Lagrangian description since the stones are in the moving state, not in the stationary state. From hydraulic experiments the relative velocity could be obtained. In order to minimize the scale effect, the extra wide channel of 5.0 m wide and 1.0 m high was constructed and the experimental stones were fully spherical ones. Experimental results showed that the ratio of flow velocity to spherical particle velocity was measured between 0.5 and 0.7, and this result was substituted into the suggested equation to identify the critical condition wether the stones were excluded. Regimes about the exclusion of stone in bypass pipe were divided into three types according to particle Reynolds number ($Re_p$) and dimensionless critical shear force (${\tau}_c{^*}$) - exclusion section, probabilistic exclusion section, no exclusion section. Results from this study would be useful and essential information for bypass pipe design in transveral structures.

키워드

참고문헌

  1. Apperley, L. W. (1967). The Effect of Turbulence on Sediment Entrainment, Ph.D. Thesis, University of Auckland, Auckland, New Zealnd.
  2. Einstein, H. A. and El-Samni, E. S. A. (1949). "Hydrodynamic forces on a rough wall." Reviews of Modern Physics, Vol. 21, No. 3, p. 520. https://doi.org/10.1103/RevModPhys.21.520
  3. Fortier, S. and Scobey, F. C. (1923). "Permissible canal velocities." Proceedings of the American Society of Civil Engineers, Vol. 51, No. 7, pp. 1398-1414.
  4. Han, K. Y. (1997). "Modeling of nutrients and sediment/water quality interactions." Journal of the Korean Water Resources Association, Vol. 30, No. 4, pp. 28-34 (in Korean).
  5. Jeong, S. I. and Lee, S. O. (2016). "Experimental study for flushing of sediment bypass pipe underneath rubber weir." Journal of the Korean Society of Safety, Vol. 31, No. 5, pp. 133-140 (in Korean). https://doi.org/10.14346/JKOSOS.2016.31.5.133
  6. Karma, H. (1935). "Sand mixtures and sand movement in fluvial models." Proceedings of the American Society of Civil Engineers, Vol. 60, No. 4, pp. 443-484.
  7. Ling, C. H. (1995). "Criteria for incipient motion of spherical sediment particles." Journal of Hydraulic Engineering, Vol. 121, No. 6, pp. 472-478. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(472)
  8. Mavis, F. T. and Laushey, L. M. (1949). "Formula for velocity at beginning of bed-load movement is reappraised." Civil Engineering, Vol. 19, pp. 38-39.
  9. Ministry of Agriculture and Forestry (1998). Agricultural Production Infrastructure Improvement Project Plan Design Standards (in Korea).
  10. Rouse, H. (1939). An analysis of sediment transportation in the light of fluid turbulence. SCS, Report No. SCS-TP-25, US Department of Agriculture, Washington, D. C.
  11. Schiller, L. and Naumann, A. (1933). "Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung." Z. Ver. Dtsch. Ing, Vol. 77, No. 12, pp. 318-320.
  12. Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Preussischen Versuchsanstalt fur Wasserbau. Mavis.
  13. White, C. M. (1940). "The equilibrium of grains on the bed of a stream." Proceedings of the Royal Society of London. Series A, Vol. 174, No. 958, pp. 322-338. https://doi.org/10.1098/rspa.1940.0023