DOI QR코드

DOI QR Code

Sentinel-1 SAR 데이터를 이용한 우리나라 농지의 토양수분 산출 실험

Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data

  • 이수진 (부경대학교 지구환경시스템과학부 공간정보공학전공) ;
  • 홍성욱 (세종대학교 환경에너지공간융합학과) ;
  • 조재일 (전남대학교 응용식물학과) ;
  • 이양원 (부경대학교 지구환경시스템과학부 공간정보공학전공)
  • Lee, Soo-Jin (Department of Spatial information Engineering, Pukyong National University) ;
  • Hong, Sungwook (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University) ;
  • Lee, Yang-Won (Department of Spatial information Engineering, Pukyong National University)
  • 투고 : 2017.09.29
  • 심사 : 2017.11.28
  • 발행 : 2017.12.31

초록

토양수분은 지구복사에너지평형과 물순환에 영향을 미치는 중요한 인자이므로, 수문학 연구에 있어서 토양수분의 함량을 파악하는 것은 매우 중요하다. 현재 수동형 마이크로파 위성의 토양수분 자료는 10~36 km의 저해상도로서 국지규모의 수문분석에 사용하기에는 어려움이 있다. 또한 현장관측 토양수분자료는 지점 자료이므로 공간연속성을 보장하지 못하는 한계가 있다. 이에 본 연구에서는 Sentinel-1의 SAR(Synthetic Aperture Radar) 영상을 이용하여 우리나라 농지에서 10 m 해상도의 토양수분 산출 가능성을 살펴보았다. 2015-2017년 4월부터 10월까지 5개의 토양수분 지상관측지점을 대상으로, Sentinel-1 후방산란을 이용하여 선형회귀와 SVR(support vector regression) 방법으로 토양수분 산출을 수행하였다. 편파에 따라 후방산란계수의 토양수분에 대한 민감도가 다르지만, 산출정확도는 VV 편파와 VH 편파가 유사하였다. 토양수분은 식물계절학(phenology)보다는 수문기상과 지면특성에 보다 더 영향을 받기 때문에 토양수분 산출에 있어 특별한 계절성은 발견되지 않았다. 대체로 입사각이 작을수록 후방산란과 토양수분간의 관계 패턴이 더 뚜렷하게 나타났으며, 또한 지면에 수분이 충분히 고르게 분포하는 경우 표면 간섭이 줄어들어(시간적으로는 강수시, 공간적으로는 논에서) 산출정확도가 상대적으로 높게 나타났다. 전체적으로 RMSE(root mean square error) 6.5% 정도의 오차를 보였으나, 향후 지면 거칠기, 지형, 토성 등 다양한 지면 변수의 영향을 반영한다면 보다 더 정확도 높은 토양수분을 산출할 수 있을 것으로 사료된다.

Soil moisture plays an important role to affect the Earth's radiative energy balance and water cycle. In general, satellite observations are useful for estimating the soil moisture content. Passive microwave satellites have an advantage of direct sensitivity on surface soil moisture. However, their coarse spatial resolutions (10-36 km) are not suitable for regional-scale hydrological applications. Meanwhile, in-situ ground observations of point-based soil moisture content have the disadvantage of spatially discontinuous information. This paper presents an experimental soil moisture retrieval using Sentinel-1 SAR (Synthetic Aperture Radar) with 10m spatial resolution for cropland in South Korea. We developed a soil moisture retrieval algorithm based on the technique of linear regression and SVR (support vector regression) using the ground observations at five in-situ sites and Sentinel-1 SAR data from April to October in 2015-2017 period. Our results showed the polarization dependency on the different soil sensitivities at backscattered signals, but no polarization dependence on the accuracies. No particular seasonal characteristics of the soil moisture retrieval imply that soil moisture is generally more affected by hydro-meteorology and land surface characteristics than by phenological factors. At the narrower range of incidence angles, the relationship between the backscattered signal and soil moisture content was more distinct because the decreasing surface interference increased the retrieval accuracies under the condition of evenly distributed soil moisture (during the raining period or on the paddy field). We had an overall error estimate of RMSE (root mean square error) of approximately 6.5%. Our soil moisture retrieval algorithm will be improved if the effects of surface roughness, geomorphology, and soil properties would be considered in the future works.

키워드

참고문헌

  1. Alexakis, D. D., F. D. K. Mexis, A. E. K. Vozinaki, I. N. Daliakopoulos, and I. K. Tsanis, 2017. Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products: A hydrological approach, Sensors, 17(6): 1455. https://doi.org/10.3390/s17061455
  2. Baghdadi, N. N., M. E. Hajj, M. Zribi, and I. Fayad, 2016. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(3): 1229-1243. https://doi.org/10.1109/JSTARS.2015.2464698
  3. Baghdadi, N., M. Aubert, O. Cerdan, L. Franchisteguy, C. Viel, M. Eric, and J. F. Desprats, 2007. Operational mapping of soil moisture using synthetic aperture radar data: application to the Touch basin (France), Sensors, 7(10): 2458-2483. https://doi.org/10.3390/s7102458
  4. Brocca, L., S. Hasenauer, T. Lacava, F. Melone, T. Moramarco, W. Wagner, W. Dorigo, P. Matgen, J. Martinez-Fernandez, P. Llorens, J. Latron, C. Martin, and M. Bittelli, 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sensing of Environment, 115(12): 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  5. Chevalier, F. L., 2002. Principles of Radar and Sonar Signal Processing, Artech House, Norwood, MA, USA.
  6. Das, K. and P. K. Paul, 2015. Present status of soil moisture estimation by microwave remote sensing, Cogent Geoscience, 1(1): 1084669. https://doi.org/10.1080/23312041.2015.1084669
  7. Dubois, P. C., J. van Zyl, and T. Engman, 1995. Measuring soil moisture with imaging radars, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 915-926. https://doi.org/10.1109/36.406677
  8. Falloon, P., C. D. Jones, M. Ades, and K. Paul, 2011. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty, Global Biogeochemical Cycles, 25(3).
  9. Gao, Q., M. Zribi, M. J. Escorihuela, and N. Baghdadi, 2017. Synergetic Use of Sentinel-1 and Sentinel- 2 Data for Soil Moisture Mapping at 100 m Resolution, Sensors, 17(9): 1966. https://doi.org/10.3390/s17091966
  10. Hornacek, M., W. Wagner, D. Sabel, H. L. Truong, P. Snoeij, T. Hahmann, E. Diedrich, and M. Doubkova, 2012. Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4): 1303-1311. https://doi.org/10.1109/JSTARS.2012.2190136
  11. Kasischke, E. S., L. L. Bourgeau-Chavez, A. R. Rober, K. H. Wyatt, J. M. Waddington, and M. R. Turetsky, 2009. Effects of soil moisture and water depth on ERS SAR backscatter measurements from an Alaskan wetland complex, Remote Sensing of Environment, 113(9): 1868-1873. https://doi.org/10.1016/j.rse.2009.04.006
  12. Lakshmi, V., 2013. Remote sensing of soil moisture, ISRN Soil Science, 2013: 33. https://doi.org/10.1155/2013/424178
  13. Li, J. and W. Chen, 2005. A rule-based method for mapping Canada's wetlands using optical, radar and DEM data, International Journal of Remote Sensing, 26(22): 5051-5069. https://doi.org/10.1080/01431160500166516
  14. Lu, Z. and D. J. Meyer, 2002. Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: implications for characteristics of backscattering, International Journal of Remote Sensing, 23(6): 1063-1074. https://doi.org/10.1080/01431160110040035
  15. Mattia, F., G. Satalino, A. Balenzano, M. Rinaldi, P. Steduto, and J. Moreno, 2015. Sentinel-1 for wheat mapping and soil moisture retrieval, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, Jul. 26-31, pp. 2832-2835.
  16. Morvan, A. L., M. Zribi, N. Baghdadi, and A. Chanzy, 2008. Soil moisture profile effect on radar signal measurement, Sensors, 8(1): 256-270. https://doi.org/10.3390/s8010256
  17. Nichols, S., Y. Zhang, and A. Ahmad, 2011. Review and evaluation of remote sensing methods for soil-moisture estimation, Journal of Photonics for Energy, 028001-028001. https://doi.org/10.1117/1.3534910
  18. Paloscia, S., S. Pettinato, E. Santi, C. Notarnicola, L. Pasolli, and A. Reppucci, 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation, Remote Sensing of Environment, 134: 234-248. https://doi.org/10.1016/j.rse.2013.02.027
  19. Prakash, R., D. Singh, and N. P. Pathak, 2012. A fusion approach to retrieve soil moisture with SAR and optical data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1): 196-206. https://doi.org/10.1109/JSTARS.2011.2169236
  20. Pratola, C., B. Barrett, A. Gruber, G. Kiely, and E. Dwyer, 2014. Evaluation of a global soil moisture product from finer spatial resolution SAR data and ground measurements at Irish sites, Remote Sensing, 6(9): 8190-8219. https://doi.org/10.3390/rs6098190
  21. Reshmidevi, T. V., R. Jana, and T. I. Eldho, 2008. Geospatial estimation of soil moisture in rainfed paddy fields using SCS-CN-based model, Agricultural Water Management, 95(4): 447-457. https://doi.org/10.1016/j.agwat.2007.11.002
  22. Tan, L., Y. Chen, M. Jia, L. Tong, X. Li, and L. He, 2015. Rice biomass retrieval from advanced synthetic aperture radar image based on radar backscattering measurement, Journal of Applied Remote Sensing, 9(1): 097091-097091. https://doi.org/10.1117/1.JRS.9.097091
  23. Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, B. Rommen, N. Floury, M. Brown, I. N. Traver, P. Deghaye, B. Duesmann, B. Rosich, N. Miranda, C. Bruno, M. L'Abbate, R. Croci, A. Pietropaolo, M. Huchler, and F. Rostan, 2012. GMES Sentinel-1 mission, Remote Sensing of Environment, 120: 9-24. https://doi.org/10.1016/j.rse.2011.05.028
  24. Ulaby, F. T., A. Aslam, and M. C. Dobson, 1982. Effects of vegetation cover on the radar sensitivity to soil moisture, IEEE Transactions on Geoscience and Remote Sensing, GE-20(4): 476-481. https://doi.org/10.1109/TGRS.1982.350413
  25. van Emmerik, T., S. C. Steele-Dunne, J. Judge, and N. van de Giesen, 2015. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress, IEEE Transactions on Geoscience and Remote Sensing, 53(7): 3855-3869. https://doi.org/10.1109/TGRS.2014.2386142
  26. Vapnik., V., 1998. Statistical Learning Theory, Wiley, New York, NY, USA.
  27. Wagner, W., D. Sabel, M. Doubkova, A. Bartsch, and C. Pathe, 2009. The potential of Sentinel-1 for monitoring soil moisture with a high spatial resolution at global scale, Symposium of Earth Observation and Water Cycle Science, Frascati, Italy, Nov. 18-20.
  28. Wagner, W., G. Lemoine, and H. Rott, 1999. A method for estimating soil moisture from ERS scatterometer and soil data, Remote sensing of environment, 70(2): 191-207. https://doi.org/10.1016/S0034-4257(99)00036-X
  29. Zhang, D. and G. Zhou, 2016. Estimation of soil moisture from optical and thermal remote sensing: A review, Sensors, 16(8): 1308. https://doi.org/10.3390/s16081308
  30. Zhao, W. and A. Li, 2013. A downscaling method for improving the spatial resolution of AMSR-E derived soil moisture product based on MSGSEVIRI data, Remote Sensing, 5(12): 6790-6811. https://doi.org/10.3390/rs5126790

피인용 문헌

  1. Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구 vol.37, pp.2, 2017, https://doi.org/10.7780/kjrs.2021.37.2.5