DOI QR코드

DOI QR Code

북극해에서 다중위성 자료를 이용한 표층수온, 해빙농도 및 클로로필의 장기 변화

Climatological Variability of Multisatellite-derived Sea Surface Temperature, Sea Ice Concentration, Chlorophyll-a in the Arctic Ocean

  • 김현아 (한국해양과학기술원 제주특성연구실) ;
  • 박진구 (부산대학교 해양학과) ;
  • 김현철 (극지연구소 북극해빙예측사업단) ;
  • 손영백 (한국해양과학기술원 제주특성연구실)
  • Kim, Hyuna (Jeju Environment Research Section, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Park, Jinku (Department of Oceanography, Pusan National University) ;
  • Kim, Hyun-Cheol (Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute (KOPRI)) ;
  • Son, Young Baek (Jeju Environment Research Section, Korea Institute of Ocean Science & Technology (KIOST))
  • 투고 : 2017.09.27
  • 심사 : 2017.11.13
  • 발행 : 2017.12.31

초록

최근 전지구적인 기후변화가 직/간접적으로 북극환경에 큰 변화를 야기하고 있다. 해양-대기의 상호적인 피드백 작용은 최근 막대한 양의 해빙면적 감소를 초래했으며, 북극 온난화 현상을 가속시켜 왔다. 이러한 현상들은 직/간접적으로 북극의 생-물리학적 상호관계에 영향을 주어 해양생태계에 많은 변화를 초래할 것으로 보고되었다. 본 연구는 북극환경변화에 대해 물리-생물학적인 현상의 변화 및 인자간의 관계성을 포괄적으로 이해하기 위해 수행되었다. 북극의 환경변화를 조사하기 위해 SeaWiFS 및 MODIS-Aqua에서 제공하는 클로로필 농도와 OISST의 표층수온, ECMWF ERA-Interim의 해빙농도 자료를 이용하였다. 연구기간은 1998년-2016년 여름이며 조사해역은 북위 $60^{\circ}$ 이상의 해역으로 제한하였다. 전체적으로 클로로필의 증가($0.15mg\;m^{-3}\;decade^{-1}$), 표층수온의 상승($0.43^{\circ}C\;decade^{-1}$), 해빙농도의 감소($-5.37%\;decade^{-1}$)를 보였으나 해역별로 차이를 나타냈다. 이들 인자간 상관성 분석에서 표층수온과 해빙농도간의 상관성은 전 해역에 걸쳐 강한 음의 상관관계(r=-0.76)를 보인 반면, 클로로필과 해빙농도의 관계는 자료의 한계성으로 인해 전체적으로 낮은 상관성($r={\pm}0.1$)을 나타내었다. 또한 표층수온과 클로로필의 상관성은 해역에 따라 편차를 보이나 약 ${\pm}0.6$의 상관성을 보였다.

Recently, global climate change has caused a catastrophic event in the Arctic Ocean, directly and indirectly. The air-sea interaction has caused the significant sea-ice reduction in the Arctic Ocean, and has been accelerating the Arctic warming. Many scientists are worried about the Arctic environment change, suggesting that many of anomalous events will produce direct or indirect biophysical effects on the Arctic. The aim of this study is to understand the inter-annual variability of the Arctic Ocean in wide-view using multi-satellite-derived measurements. Sea surface temperature (SST) and sea ice concentration (SIC) data were obtained from Optimum Interpolation Sea Surface Temperature (OISST) and ECMWF ERA-Interim, respectively. Chlorophyll-a concentration (CHL) was obtained from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Aqua sensor from MODerate resolution Imaging Spectroradiometer (MODIS-Aqua) sensor which has continuously observed since 1998. From 1998 to 2016 summer in the Arctic Ocean which was defined as regions over $60^{\circ}N$ in this study, there were three consequences that CHL increase ($0.15mg\;m^{-3}\;decade^{-1}$), SST warming ($0.43^{\circ}C\;decade^{-1}$) and SIC decrease ($-5.37%\;decade^{-1}$). While SST and SIC highly correlated each other (r = -0.76), a relationship between CHL and SIC was very low ($r={\pm}0.1$) because of data limitations. And a relationship between CHL and SST shows meaningful results ($r={\pm}0.66$) with regional differences.

키워드

참고문헌

  1. Aagaard, K., J. H. Swift, and E. C. Carmack, 1985. Thermohaline circulation in the Arctic Mediterranean Seas, Journal of Geophysical Research, 90(C3): 4833-4846. https://doi.org/10.1029/JC090iC03p04833
  2. Abdalati, W., W. Krabill, E. Frederick, S. Manizade, C. Martin, J. Sonntag, R. Swift, R. Thomas, W. Wright, and J. Yungel, 2001. Outlet glacier and margin elevation changes: Near-coastal thinning of the Greenland ice sheet, Journal of Geophysical Research: Atmospheres, 106(D24): 33729-33741. https://doi.org/10.1029/2001JD900192
  3. Andresen, C. S., F. Straneo, M. H. Ribergaard, A. A. Bjork, T. J. Andersen, A. Kuijpers, N. Norgaard- Pedersen, K. H. Kjaer, F. Schjoth, K. Weckstrom, and A. P. Ahlstrom, 2011. Rapid response of Helheim Glacier in Greenland to climate variability over the past century, Nature Geoscience, 5(1): 37-41. https://doi.org/10.1038/ngeo1349
  4. Arrigo, K. R. and G. L. van Dijken, 2004. Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic, Geophysical Research Letters, 31(8): 2-5.
  5. Arrigo, K. R. and G. L. van Dijken, 2011. Secular trends in Arctic Ocean net primary production, Journal of Geophysical Research: Oceans, 116(C9): 1-15.
  6. Arrigo, K. R. and G. L. van Dijken, 2015. Continued increases in Arctic Ocean primary production, Progress in Oceanography, 136: 60-70. https://doi.org/10.1016/j.pocean.2015.05.002
  7. Bader, Ju, 2014. The origin of regional Arctic warming Construction of a yeast chromosome, Nature, 509(7501): 8-9. https://doi.org/10.1038/509008a
  8. Barber, D. G., H. Hop, C. J. Mundy, B. Else, I. A. Dmitrenko, J. E. Tremblay, J. K. Ehn, P. Assmy, M. Daase, L. M. Candlish, and S. Rysgaard, 2015. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone, Progress in Oceanography, 139: 122-150. https://doi.org/10.1016/j.pocean.2015.09.003
  9. Belchansky, G. I., D. C. Douglas, and N. G. Platonov, 2004. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001, Journal of Climate, 17(1): 67-80. https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2
  10. Beszczynska-Möller, A., R. Woodgate, C. Lee, H. Melling, and M. Karcher, 2011. A Synthesis of Exchanges Through the Main Oceanic Gateways to the Arctic Ocean, Oceanography, 24(3): 82-99. https://doi.org/10.5670/oceanog.2011.59
  11. Boe, J., A. Hall, and X. Qu, 2009. September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nature Geoscience, 2(5): 341-343. https://doi.org/10.1038/ngeo467
  12. Carmack, E. C., K. Aagaard, J. H. Swift, R. W. Macdonald, F. A. McLaughlin, E. P. Jones, R. G. Perkin, J. N. Smith, K. M. Ellis, and L. R. Killiush, 1997. Changes in temperature and tracer distributions within the Arctic Ocean: Results from the 1994 Arctic Ocean section, Deep-Sea Research Part II: Topical Studies in Oceanography, 44(8): 1487-1502. https://doi.org/10.1016/S0967-0645(97)00056-8
  13. Carmack, E., I. Polyakov, L. Padman, I. Fer, E. Hunke, J. Hutchings, J. Jackson, D. Kelley, R. Kwok, C. Layton, H. Melling, D. Perovich, O. Persson, B. Ruddick, M. L. Timmermans, J. Toole, T. Ross, S. Vavrus, P. Winsor, 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic, Bulletin of the American Meteorological Society, 96(12): 2079-2105. https://doi.org/10.1175/BAMS-D-13-00177.1
  14. Cavalieri, D. J., 2003. 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability, Geophysical Research Letters, 30(18): 4-7. https://doi.org/10.1029/2003GL018031
  15. Comiso, J. C. 2003. Warming trends in the Arctic from clear sky satellite observations, Journal of Climate, 16(21): 3498-3510. https://doi.org/10.1175/1520-0442(2003)016<3498:WTITAF>2.0.CO;2
  16. Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Holm, L. Isaksen, P. Kallberg, M. Kohler, M. Matricardi, A. P. Mcnally, B. M. Monge-Sanz, J. J. Morcrette, B. K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J. N. Thepaut, and F. Vitart, 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137(666): 553-597. https://doi.org/10.1002/qj.828
  17. Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland, Nature, 509(7499): 209-212. https://doi.org/10.1038/nature13260
  18. Doney, S. C., M. Ruckelshaus, J. Emmett Duffy, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hollowed, N. Knowlton, J. Polovina, N. N. Rabalais, W. J. Sydeman, and L. D. Talley, 2012. Climate Change Impacts on Marine Ecosystems, Annual Review of Marine Science, 4: 11-37. https://doi.org/10.1146/annurev-marine-041911-111611
  19. Francis, J. A. and E. Hunter, 2006. New insight into the disappearing Arctic sea ice, Eos, Transactions American Geophysical Union, 87(46): 509-511. https://doi.org/10.1029/2006EO460001
  20. Gascard, J. C., J. Festy, H. Le Goff, M. Weber, B. Bruemmer, M. Offermann, M. Doble, P. Wadhams, R. Forsberg, S. Hanson, H. Skourup, S. Gerland, M. Nicolaus, J. P. Metaxian, J. Grangeon, J. Haapala, E. Rinne, C. Haas, G. Heygster, E. Jakobson, T. Palo, J. Wilkinson, L. Kaleschke, K. Claffey, B. Elder, and J. Bottenheim, 2008. Exploring Arctic transpolar drift during dramatic sea ice retreat, Eos, Transactions American Geophysical Union, 89(3): 21-22. https://doi.org/10.1029/2008EO030001
  21. Goosse, H., E. Driesschaert, T. Fichefet, and M.-F. Loutre, 2007. Information on the early Holocene climate constrains the summer sea ice projections for the 21st century, Climate of the Past, 3(4): 683-692. https://doi.org/10.5194/cp-3-683-2007
  22. Gosselin, M., M. Levasseur, P. A. Wheeler, R. A. Horner, and B. C. Booth, 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean, Deep-Sea Research Part II: Topical Studies in Oceanography, 44(8): 1623-1644. https://doi.org/10.1016/S0967-0645(97)00054-4
  23. Groves, D. G. and J. A. Francis, 2002. Variability of the Arctic atmospheric moisture budget from TOVS satellite data, Journal of Geophysical Research Atmospheres, 107(D24).
  24. Hegseth, E. N. 1998. Primary production of the northern Barents Sea, Polar Research, 17(2): 113-123. https://doi.org/10.3402/polar.v17i2.6611
  25. Hill, V. and G. Cota, 2005. Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002, Deep Sea Research Part II: Topical Studies in Oceanography, 52(24): 3344-3354. https://doi.org/10.1016/j.dsr2.2005.10.001
  26. Holland, M. M., J. Finnis, and M. C. Serreze, 2006a. Simulated Arctic Ocean freshwater budgets in the twentieth and twenty-first centuries, Journal of Climate, 19(23): 6221-6242. https://doi.org/10.1175/JCLI3967.1
  27. Holland, M. M., C. M. Bitz, and B. Tremblay, 2006b. Future abrupt reductions in the summer Arctic sea ice, Geophysical Research Letters, 33(23): 1-5.
  28. Holland, D. M., R. H. Thomas, B. De Young, M. H. Ribergaard, and B. Lyberth, 2008. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters, Nature Geoscience, 1(10): 659-664. https://doi.org/10.1038/ngeo316
  29. Hu, C., S. Yang, Q. Wu, Z. Li, J. Chen, K. Deng, T. Zhang, and C. Zhang, 2016. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin, Nature Communications, 7.
  30. IOCCG, 2004. Guide to the Creation and Use of Ocean- Color, Level-3, Binned Data product, Reports of the International Ocean-Colour Coordinating Group, No.4, IOCCG, Dartmouth, Canada, p. 88.
  31. IOCCG, 2007. Ocean-Colour Data Merging, Reports of the International Ocean-Colour Coordinating Group, No.4, IOCCG, Dartmouth, Canada, p. 68.
  32. Jay, Z. H., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and and P. Gloersen, 2002. Variability of Antarctic sea ice 1979-1998, Journal of Geophysical Research: Oceans, 107(C5): 3041. https://doi.org/10.1029/2000JC000733
  33. Jones, E. P., L. G. Anderson, and J. H. Swift, 1998. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for circulation, Geophysical Research Letters, 25(6): 765-768. https://doi.org/10.1029/98GL00464
  34. Kay, J. E., T. L'Ecuyer, A. Gettelman, G. Stephens, and C. O'Dell, 2008. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum, Geophysical Research Letters, 35(8): 1-5.
  35. Labiosa, R. G., K. R. Arrigo, A. Genin, S. G. Monismith, and G. van Dijken, 2003. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: Evidence from SeaWiFS and MODIS, Limnology and Oceanography, 48(6): 2355-2368. https://doi.org/10.4319/lo.2003.48.6.2355
  36. Lammers, R. B., A. I. Shiklomanov, C. J. Vorosmarty, B. M. Fekete, and B. J. Peterson, 2001. Assessment of contemporary Arctic river runoff based on observational discharge records, Journal of Geophysical Research, 106(D4): 3321. https://doi.org/10.1029/2000JD900444
  37. Li, F., Y. H. Jo, W. Timothy Liu, and X. H. Yan, 2012. A dipole pattern of the sea surface height anomaly in the North Atlantic: 1990s-2000s, Geophysical Research Letters, 39(15): 1-6.
  38. Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009. Arctic sea ice retreat in 2007 follows thinning trend, Journal of Climate, 22(1): 165-176. https://doi.org/10.1175/2008JCLI2521.1
  39. Loeng, H., V. Ozhigin, and B. Adlandsvik, 1997. Water fluxes through the Barents Sea, ICES Journal of Marine Science, 54(3): 310-317. https://doi.org/10.1006/jmsc.1996.0165
  40. Lohmann, K., H. Drange, and M. Bentsen, 2009. Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing, Climate Dynamics, 32(2-3): 273-285. https://doi.org/10.1007/s00382-008-0467-6
  41. Macdonald, R. W., S. M. Solomon, R. E. Cranston, H. E. Welch, M. B. Yunker, and C. Gobeil, 1998. A sediment and organic carbon budget for the Canadian beaufort shelf, Marine Geology, 144(4): 255-273. https://doi.org/10.1016/S0025-3227(97)00106-0
  42. Matthiessen, J., M. Kunz-Pirrung, and P. J. Mudie, 2000. Freshwater chlorophycean algae in recent marine sediments ofthe Beaufort, Laptev and Kara Seas (Arctic Ocean) as indicators of river runoff, International Journal of Earth Sciences, 89(3): 470-485. https://doi.org/10.1007/s005310000127
  43. McClelland, J. W., R. M. Holmes, B. J. Peterson, and M. Stieglitz, 2004. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change, Journal of Geophysical Research Atmospheres, 109(D18): 1-12.
  44. McLaughlin, F. A., E. C. Carmack, R. W. Macdonald, and J. K. B. Bishop, 1996. Physical and geochemical properties across the Atlantic/ Pacific water mass front in the southern Canadian Basin, Journal of Geophysical Research, 101(C1): 1183. https://doi.org/10.1029/95JC02634
  45. Meon, B. and R. M. W. Amon, 2004. Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic Rivers Ob Yenisey and the Kara Sea, Aquatic Microbial Eology, 37(2): 121-135. https://doi.org/10.3354/ame037121
  46. Mock, T. and R. Gradinger, 1999. Determination of Arctic ice algal production with a new in situ incubation technique, Marine Ecology Progress Series, 177: 15-26. https://doi.org/10.3354/meps177015
  47. Munchow, A., K. K. Falkner, and H. Melling, 2007. Spatial continuity of measured seawater and tracer fluxes through Nares Strait, a dynamically wide channel bordering the Canadian Archipelago, Journal of Marine Research, 65(6): 759-788. https://doi.org/10.1357/002224007784219048
  48. Myers, P. G., N. Kulan, and M. H. Ribergaard, 2007. Irminger water variability in the West Greenland Current, Geophysical Research Letters, 34(17): 2-7.
  49. Mysak, L. A. and S. A. Venegas, 1998. Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere-ice-ocean interactions, Geophysical Research Letters, 25(19): 3607. https://doi.org/10.1029/98GL02782
  50. Nelson, M., O. Smith, I. Gordon, and A. Huber, 1987. Spring Distributions of Density, Nutrients, and Phytoplankton Biomass in the Ice Edge Zone of the Weddell-Scotia Sea, Journal of Geophysical Research, 92(C7): 7181-7190. https://doi.org/10.1029/JC092iC07p07181
  51. O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. MaClain, 1998. Ocean color chlorophyll algorighms for SeaWiFS, Journal of Geophysical Research, 103(C11): 24937-24953. https://doi.org/10.1029/98JC02160
  52. Pabi, S., G. L. van Dijken, and K. R. Arrigo, 2008. Primary production in the Arctic Ocean, 1998- 2006, Journal of Geophysical Research: Oceans, 113(C8): 1998-2006.
  53. Parkinson, C. L. and J. C. Comiso, 2013. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm, Geophysical Research Letters, 40(7): 1356-1361 https://doi.org/10.1002/grl.50349
  54. Pavlov, V. K., L. A. Timokhov, G. A. Baskakov, M. Y. Kulakov, V. K. Kurazhov, P. V. Pavlov, S. V. Pivovarov, and V. V. Stanovoy, 1996. Hydrometeorological Regime of the Kara, Laptev, and East-Siberian Seas (No. APL-UWTM-1-96), Washington University Seattle applied physics lab, USA.
  55. Perovich, D. K., J. A. Richeter-Menge, K. F. Jones, and B. Light, 2008. Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007, Geophysical Research Letters, 35(11): 2-5.
  56. Perrette, M., A. Yool, G. D. Quartly, and E. E. Popova, 2011. Near-ubiquity of ice-edge blooms in the Arctic, Biogeosciences, 8(2): 515-524. https://doi.org/10.5194/bg-8-515-2011
  57. Peterson, B. J. 2002. Increasing River Discharge to the Arctic Ocean, Science, 298(5601): 2171-2173. https://doi.org/10.1126/science.1077445
  58. Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh, and K. Aagaard, 2006. Trajectory shifts in the Arctic and subarctic freshwater cycle, Science, 313(5790): 1061-1066. https://doi.org/10.1126/science.1122593
  59. Post, E., M. C. Forchhammer, M. S. Bret-Harte, T. V. Callaghan, T. R. Christensen, B. Elberling, A. D. Fox, O. Gilg, D. S. Hik, T. T. Hoye, R. A. Ims, E. Jeppesen, D. R. Klein, J. Madsen, A. D. McGuire, S. Rysgaard, D. E. Schindler, I. Stirling, M. P. Tamstorf, N. J.C. Tyler, R. van der Wal, J. Welker, P. A. Wookey, N. M. Schmidt, and P. Aastrup, 2009. Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946): 1355-1358. https://doi.org/10.1126/science.1173113
  60. Rainville, L. and R. A. Woodgate, 2009. Observations of internal wave generation in the seasonally ice-free Arctic, Geophysical Research Letters, 36(23): 1-5.
  61. Rigor, I. G. and J. M. Wallace, 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent, Geophysical Research Letters, 31(9): 2-5.
  62. Robson, J., K. Lohmann, D. Smith, and M. D. Palmer, 2012. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s, Journal of Climate, 25(12): 4116-4134. https://doi.org/10.1175/JCLI-D-11-00443.1
  63. Schauer, U., E. Fahrbach, S. Osterhus, and G. Rohardt, 2004. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements, Journal of Geophysical Research: Oceans, 109(C6): 1-14.
  64. Serreze, M. C., M. M. Holland, and J. C. Stroeve, 2007. Perspectives on the Arctic's Shrinking Sea-Ice Cover, Science, 315(5818): 1533-1536. https://doi.org/10.1126/science.1139426
  65. Shibata, A., H. Murakami, and J. C. Comiso, 2010. Sea Surface Temperature in Arctic Ocean from 2002 to 2009 Observed by Advanced Microwave Scanning Radiometer-E, Journal of The Remote Sensing Society of Japan, 30(2): 105-113.
  66. Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean, Geophysical Research Letters, 33(8): 3-6.
  67. Smith, W. O., 1987. Phytoplankton dynamics in marginal ice zones, Oceanography and Marine Biology, 25: 11-38.
  68. Smith, W. O., 1995. Primary productivity and new production in the Northeast Water (Greenland) Polynya during summer 1992, Journal of Geophysical Research, 100(C3): 4357-4370. https://doi.org/10.1029/94JC02764
  69. Steele, M., W. Ermold, and J. Zhang, 2008. Arctic Ocean surface warming trends over the past 100 years, Geophysical Research Letters, 35(2): 1-6.
  70. Stein, M., 2006. North Atlantic subpolar gyre warming - Impacts on Greenland offshore waters, Journal of Northwest Atlantic Fishery Science, 36: 43-54. https://doi.org/10.2960/J.v36.m568
  71. Swift, J. H., E. P. Jones, K. Aagaard, E. C. Carmack, M. Hingston, R. W. MacDonald, F. A. McLaughlin, and R. G. Perkin, 1997. Waters of the Makarov and Canada basins, Deep Sea Research Part II: Topical Studies in Oceanography, 44(8): 1503-1529. https://doi.org/10.1016/S0967-0645(97)00055-6
  72. Vihma, T., 2014. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surveys in Geophysics, 35(5): 1175-1214. https://doi.org/10.1007/s10712-014-9284-0
  73. Wang, X. and J. R. Key, 2005. Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part II: Recent trends, Journal of Climate, 18(14): 2575-2593. https://doi.org/10.1175/JCLI3439.1
  74. Woodgate, R. A., K. Aagaard, and T. J. Weingartner, 2006. Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004, Geophysical Research Letters, 33(15): 2-6.
  75. Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat, Geophysical Research Letters, 40(4): 720-726. https://doi.org/10.1002/grl.50190
  76. Zhang, R., 2008. Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation, Geophysical Research Letters, 35(20): 1-6. https://doi.org/10.1029/2008GL035463
  77. Zuidema, P., B. Baker, and Y. Han, 2005. An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA., Journal of the Atmospheric Sciences, 62(1): 160-176. https://doi.org/10.1175/JAS-3368.1