DOI QR코드

DOI QR Code

Emotion and Sentiment Analysis from a Film Script: A Case Study

영화 대본에서 감정 및 정서 분석: 사례 연구

  • 유혜연 (성균관대학교 컴퓨터공학과) ;
  • 김문현 (성균관대학교 컴퓨터공학과) ;
  • 배병철 (홍익대학교 게임학부)
  • Received : 2017.12.12
  • Accepted : 2017.12.25
  • Published : 2017.12.31

Abstract

Emotion plays a key role in both generating and understanding narrative. In this article we analyzed the emotions represented in a movie script based on 8 emotion types from the wheel of emotions by Plutchik. First we conducted manual emotion tagging scene by scene. The most dominant emotions by manual tagging were anger, fear, and surprise. It makes sense when the film script we analyzed is a thriller-genre. We assumed that the emotions around the climax of the story would be heightened as the tension grew up. From manual tagging we could identify three such duration when the tension is high. Next we analyzed the emotions in the same script using Python-based NLTK VADERSentiment tool. The result showed that the emotions of anger and fear were most matched. The emotion of surprise, anticipation, and disgust, however, scored lower matching.

감정은 서사 생성과 이해 모두에서 중요한 역할을 한다. 본 논문은 플루칙의 감정 모델을 기반으로 영화 대본에서 8가지 감정 표현을 분석하였다. 먼저 각 장면별 수동으로 감정을 태깅하였고, 이 때 8가지 감정 중 분노, 공포, 그리고 놀람이 가장 우세하게 나타났는데, 이는 스릴러 영화 장르를 고려할 때 의미있다고 할 수 있다. 또한, 스토리에서 긴장이 가장 고조되는 클라이맥스에서 다양한 감정이 복합적으로 나타난다고 가정하였고, 대본 상에서 3 부분의 클라이맥스를 확인할 수 있었다. 그 다음으로 파이썬 (Python) 프로그래밍 언어 기반 자연어처리 도구인 NLTK (Natural Language ToolKit)의 감성 분석 도구를 이용하여 수동 감정 태깅과 비교한 결과, 분노와 공포 감정에서 높은 일치율을, 그리고 놀람, 기대, 혐오 감정에서는 낮은 일치율을 보임을 확인하였다.

Keywords

References

  1. W. Kintsch, "Learning from text, levels of comprehension, or: Why anyone would read a story anyway?," Poetics, Vol. 9, No.1-3, pp. 87-98, 1980. https://doi.org/10.1016/0304-422X(80)90013-3
  2. K. Oatley, "A taxonomy of the emotions of literary response and a theory of identification in fictional narrative," Poetics, Vol.23, pp. 53 - 74, 1994.
  3. S. Keen, "A theory of narrative empathy," Narrative, Vol. 14, No. 3, pp. 207-236, 2006. https://doi.org/10.1353/nar.2006.0015
  4. A. J. Reagan, L. Mitchell, D. Kiley, C. M. Danforth, and P. S. Dodds. "The Emotional Arcs of Stories Are Dominated by Six Basic Shapes". EPJ Data Science, 5:31, 2016. https://doi.org/10.1140/epjds/s13688-016-0093-1
  5. S. Costa, A. Brunete, B.C. Bae, N. Mavridis, "Emotional Storytelling using Virtual and Robotic Agents". arXiv preprint arXiv:1607.05327, 2016.
  6. B. Pang and L. Lee. "Opinion Mining and Sentiment Analysis", Foundations and Trends in Information Retrieval, vol. 2, nos. 1-2, pp. 1-135, 2008. https://doi.org/10.1561/1500000011
  7. R. Feldman, "Techniques and Applications for Sentiment Analysis," Communications of the ACM, Vol. 56, No.4, pp.82-89. 2013. https://doi.org/10.1145/2436256.2436274
  8. J.P. Zagal, N. Tomuro, N. and A. Shepitsen. "Natural Language Processing in Game Studies Research: An Overview", Simulation & Gaming, vol 43, no.3, pp. 356-373, 2012. https://doi.org/10.1177/1046878111422560
  9. P. Ekman and W. V. Friesen. "Universals and Cultural Differences in the Judgments of Facial Expressions of Emotion", Journal of Personality and Social Psychology, Vol53, No.4, pp. 712-717, 1987. https://doi.org/10.1037/0022-3514.53.4.712
  10. J.A. Russel. "A Circumplex Model of Affect". Journal of Personality and Social Psychology, vol 39, pp. 1161-1178. 1980. https://doi.org/10.1037/h0077714
  11. A. Ortony, G. Clore, and A. Collins, The cognitive structure of emotions, Cambridge University Press, 1988.
  12. D. Britz, "Implementing a cnn for text classification in tensorflow." (2015). Available: http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/.
  13. K-M. Ahn, Y-S.. Kim, Y-H. Kim, and Y-H. Seo, "Sentiment Classification of Movie Reviews Using Levenshtein Distance," Journal of Digital Contents Society, Vo. 14, No.4, pp. 581-587. 2013. https://doi.org/10.9728/dcs.2013.14.4.581
  14. R. Plutchik, Emotion: A psychoevolutionary synthesis. Harpercollins College Division, 1980.
  15. H. Shin, M. Kim, Y. Jo, H. Jang, and A. Cattle. KOSAC(Korean Sentiment Analysis Corpus), Information and Computation, pages 181-190, 2013.
  16. E. Balk, M. Chung, N. Hadar, K. Patel, W. W. Yu, T.A. Trikalinos, and L.K.W. Chang, "Accuracy of data extraction of non-English language trials with Google Translate," Methods Research Reports, 2012.
  17. G. Prince. A Dictionary of Narratology. 2013.