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FEKETE-SZEGÖ INEQUALITIES FOR A SUBCLASS OF

ANALYTIC BI-UNIVALENT FUNCTIONS DEFINED BY

SĂLĂGEAN OPERATOR

Serap BULUT

Abstract. In this paper, by means of the Sălăgean operator, we
introduce a new subclass Bm,n

Σ (γ;ϕ) of analytic and bi-univalent
functions in the open unit disk U. For functions belonging to this
class, we consider Fekete-Szegö inequalities.

1. Introduction

Let R = (−∞,∞) be the set of real numbers, C be the set of complex
numbers and

N := {1, 2, 3, . . .} = N0\ {0}
be the set of positive integers.

Let A denote the class of all functions of the form

(1) f(z) = z +
∞∑
k=2

akz
k

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

We also denote by S the class of all functions in the normalized analytic
function class A which are univalent in U.

For two functions f and g, analytic in U, we say that the function f
is subordinate to g in U, and write

f (z) ≺ g (z) (z ∈ U) ,
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operator.



592 Serap BULUT

if there exists a Schwarz function ω, which is analytic in U with

ω (0) = 0 and |ω (z)| < 1 (z ∈ U)

such that
f (z) = g (ω (z)) (z ∈ U) .

Indeed, it is known that

f (z) ≺ g (z) (z ∈ U)⇒ f (0) = g (0) and f (U) ⊂ g (U) .

Furthermore, if the function g is univalent in U, then we have the fol-
lowing equivalence

f (z) ≺ g (z) (z ∈ U)⇔ f (0) = g (0) and f (U) ⊂ g (U) .

For f ∈ A, Sălăgean [11] introduced the following operator:

D0f (z) = f (z) ,(2)

D1f (z) = zf ′ (z) := Df (z) ,(3)

...

Dnf (z) = D
(
Dn−1f (z)

)
(n ∈ N) .(4)

If f is given by (1), then from (3) and (4) we see that

(5) Dnf (z) = z +

∞∑
k=2

knakz
k (n ∈ N0) ,

with Dnf (0) = 0.
Since univalent functions are one-to-one, they are invertible and the

inverse functions need not be defined on the entire unit disk U. In fact,
the Koebe one-quarter theorem [9] ensures that the image of U under
every univalent function f ∈ S contains a disk of radius 1/4. Thus every
function f ∈ A has an inverse f−1, which is defined by

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
.

In fact, the inverse function f−1 is given by

(6) f−1 (w) = w−a2w
2 +
(
2a2

2 − a3

)
w3−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1

are univalent in U, in the sense that f−1 has a univalent analytic contin-
uation to U. Let Σ denote the class of bi-univalent functions in U given
by (1) . For a brief history and interesting examples of functions in the
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class Σ, see [14] (see also [3]). In fact, the aforecited work of Srivastava
et al. [14] essentially revived the investigation of various subclasses of
the bi-univalent function class Σ in recent years; it was followed by such
works as those by Frasin and Aouf [10], and others (see, for example,
[1, 2, 4, 5, 6, 7, 13, 15]).

Let ϕ be an analytic and univalent function with positive real part on
U with ϕ (0) = 1, ϕ′ (0) > 0, and ϕ maps the unit disk U onto a region
starlike with respect to 1, and symmetric with respect to the real axis.
The Taylor’s series expansion of such function is of the form

(7) ϕ (z) = 1 +B1z +B2z
2 +B3z

3 + · · ·

where all coefficients are real and B1 > 0. Throughout this paper we as-
sume that the function ϕ satisfies the above conditions unless otherwise
stated.

Now we define the following subclass of function class Σ.

Definition 1.1. Let m,n ∈ N0 ;m > n and γ ∈ C\ {0} . A function
f ∈ Σ given by (1) is said to be in the class Bm,nΣ (γ;ϕ) if the following
conditions are satisfied:

(8) 1 +
1

γ

(
Dmf (z)

Dnf (z)
− 1

)
≺ ϕ (z)

and

(9) 1 +
1

γ

(
Dmg (w)

Dng (w)
− 1

)
≺ ϕ (w) ,

where z, w ∈ U and the function g = f−1 is defined by (6) .

In particular, we set Bm,nΣ (1;ϕ) := Bm,nΣ (ϕ) .
Remark 1. (i) If we set m = 1 and n = 0, then the class Bm,nΣ (γ;ϕ)

reduces to the class S∗Σ (γ;ϕ) consists of bi-starlike functions of complex
order γ of Ma-Minda type.

(ii) If we set m = 2 and n = 1, then the class Bm,nΣ (γ;ϕ) reduces to
the class CΣ (γ;ϕ) consists of bi-convex functions of complex order γ of
Ma-Minda type.

The classes S∗Σ (γ;ϕ) and CΣ (γ;ϕ) are introduced and studied by
Deniz [8]. In particular, we get S∗Σ (1;ϕ) = ST Σ (ϕ) and CΣ (1;ϕ) =
CVΣ (ϕ) (see [17]).

Remark 2. (i) For 0 < α ≤ 1, if we let

ϕ (z) := ϕα (z) =

(
1 + z

1− z

)α
= 1 + 2αz + 2α2z2 + · · ·
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in Definition 1.1, then we have a new class Bm,nΣ (γ;α) which consists of
functions satisfying the conditions∣∣∣∣arg

{
1 +

1

γ

(
Dmf (z)

Dnf (z)
− 1

)}∣∣∣∣ < απ

2

and ∣∣∣∣arg

{
1 +

1

γ

(
Dmg (w)

Dng (w)
− 1

)}∣∣∣∣ < απ

2
.

For γ = 1, we get the class Bm,nΣ (1;α) = Hm,nΣ (α) introduced and
studied by Şeker [12]. For m = 1, n = 0 and γ = 1, the class Bm,nΣ (γ;α)
reduces to the class S∗Σ [α] of strongly bi-starlike functions of order α.

(ii) For 0 ≤ β < 1, if we let

ϕ (z) := ϕβ (z) =
1 + (1− 2β) z

1− z
= 1 + 2 (1− β) z + 2 (1− β) z2 + · · ·

in Definition 1.1, then we have a new class Bm,nΣ (γ;β) which consists of
functions satisfying the conditions

<
{

1 +
1

γ

(
Dmf (z)

Dnf (z)
− 1

)}
> β

and

<
{

1 +
1

γ

(
Dmg (w)

Dng (w)
− 1

)}
> β.

For γ = 1, we get the class Bm,nΣ (1;β) = Hm,nΣ (β) introduced and
studied by Şeker [12]. The class Bm,nΣ (γ;β) reduces to the class S∗Σ (β)
of bi-starlike functions of order β for m = 1, n = 0 and γ = 1; also
reduces to the class CΣ (β) of bi-convex functions of order β for m = 2,
n = 1 and γ = 1.

The classes S∗Σ [α], S∗Σ (β) and CΣ (β) are introduced and studied by
Brannan and Taha [3].

In order to derive our main results, we need the following lemmas.

Lemma 1.2. [9] Let p(z) = 1 + c1z + c2z
2 + · · · ∈ P, where P is

the family of all functions p, analytic in U, for which <p(z) > 0. Then
|ck| ≤ 2 for k = 1, 2, . . . .

Lemma 1.3. [16] Let k, l ∈ R and z1, z2 ∈ C. If |z1| < R and
|z2| < R, then

|(k + l) z1 + (k − l) z2| ≤

 2R |k| , |k| ≥ |l|

2R |l| |k| ≤ |l|
.
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In this paper, we obtain the Fekete-Szegö inequalities for functions
belong to the class Bm,nΣ (γ;ϕ) as well as its special classes.

2. Main Results

Theorem 2.1. Let m,n ∈ N0 ;m > n and γ ∈ C\ {0} . Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class Bm,nΣ (γ;ϕ) and µ ∈ R. Then
(10)

∣∣a3 − µa2
2

∣∣ ≤


|γ|B1

3m−3n , |µ− 1| ≤ ψ

|µ−1||γ|2B3
1

|[(3m−3n)−2n(2m−2n)]γB2
1+(2m−2n)2(B1−B2)| , |µ− 1| ≥ ψ

,

where

(11) ψ =

∣∣∣∣∣1− 2n (2m − 2n)

3m − 3n
+

(2m − 2n)2 (B1 −B2)

(3m − 3n) γB2
1

∣∣∣∣∣ .
Proof. Let f ∈ Bm,nΣ (γ;ϕ) and g = f−1. Then there exist analytic

functions u, v : U→ U, with u (0) = v (0) = 0, such that

(12) 1 +
1

γ

(
Dmf (z)

Dnf (z)
− 1

)
= ϕ (u (z))

and

(13) 1 +
1

γ

(
Dmg (w)

Dng (w)
− 1

)
= ϕ (v (w)) .

Define the functions p and q by

p(z) =
1 + u(z)

1− u(z)
= 1 + p1z + p2z

2 + · · · (z ∈ U)

and

q(w) =
1 + v(w)

1− v(w)
= 1 + q1w + q2w

2 + · · · (w ∈ U)

or equivalently

(14) u(z) =
p(z)− 1

p(z) + 1
=

1

2

(
p1z +

(
p2 −

p2
1

2

)
z2 + · · ·

)
(z ∈ U)

and
(15)

v(w) =
q(w)− 1

q(w) + 1
=

1

2

(
q1w +

(
q2 −

q2
1

2

)
w2 + · · ·

)
(w ∈ U) .
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Using (14) and (15) in (12) and (13), we obtain

2m − 2n

γ
a2 =

1

2
B1p1(16)

(3m−3n)a3−2n(2m−2n)a2
2

γ =
1

2
B1

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1(17)

−2m − 2n

γ
a2 =

1

2
B1q1(18)

(3m−3n)(2a2
2−a3)−2n(2m−2n)a2

2

γ =
1

2
B1

(
q2 −

q2
1

2

)
+

1

4
B2q

2
1.(19)

From (16) and (18), we find that

(20) p1 = −q1

and

(21) 2
(2m − 2n)2

γ2
a2

2 =
1

4
B2

1

(
p2

1 + q2
1

)
.

Also summing (17) and (19) results in

2

γ
[(3m − 3n)− 2n (2m − 2n)] a2

2 =
1

2
B1 (p2 + q2)−1

4
(B1 −B2)

(
p2

1 + q2
1

)
.

Combining this with (21) leads to
(22)

a2
2 =

γ2B3
1 (p2 + q2)

4
{

[(3m − 3n)− 2n (2m − 2n)] γB2
1 + (2m − 2n)2 (B1 −B2)

} .
On the other hand, by subtracting (19) from (17) and a computation
using (20) finally lead to

(23) a3 = a2
2 +

γB1

4 (3m − 3n)
(p2 − q2) .

From (22) and (23) it follows that

a3 − µa2
2 =

γB1

4

[(
h (µ) +

1

3m − 3n

)
p2 +

(
h (µ)− 1

3m − 3n

)
q2

]
,

where

h (µ) =
(1− µ) γB2

1

[(3m − 3n)− 2n (2m − 2n)] γB2
1 + (2m − 2n)2 (B1 −B2)

.
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Since all Bj (j ∈ N) are real and B1 > 0, by Lemma 1.2 and Lemma
1.3, we conclude that

∣∣a3 − µa2
2

∣∣ ≤


|γ|B1

3m−3n , 0 ≤ |h (µ)| ≤ 1
3m−3n

|γ|B1 |h (µ)| , |h (µ)| ≥ 1
3m−3n

,

which completes the proof.

Letting m = 1, n = 0 and γ = 1 in Theorem 2.1, then we have the
following consequence.

Corollary 2.2. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class ST Σ (ϕ) and µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤


B1
2 , |µ− 1| ≤ 1

2

∣∣∣1 + B1−B2

B2
1

∣∣∣
|µ−1|B3

1

|B2
1+B1−B2| , |µ− 1| ≥ 1

2

∣∣∣1 + B1−B2

B2
1

∣∣∣ .

Remark 3. If we choose µ = 0 in the above corollary, then we get
[17, Corollary 11].

Letting m = 2, n = 1 and γ = 1 in Theorem 2.1, then we have the
following consequence.

Corollary 2.3. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class CVΣ (ϕ) and µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤


B1
6 , |µ− 1| ≤ 1

3

∣∣∣1 + 2(B1−B2)
B2

1

∣∣∣
|µ−1|B3

1

2|B2
1+2(B1−B2)| , |µ− 1| ≥ 1

3

∣∣∣1 + 2(B1−B2)
B2

1

∣∣∣ .

Remark 4. If we choose µ = 0 in the above corollary, then we get
[17, Corollary 18].

If we take µ = 1 and µ = 0 in Theorem 2.1, then we have the following
Corollary 2.4 and Corollary 2.5, respectively.

Corollary 2.4. Let m,n ∈ N0 ;m > n and γ ∈ C\ {0} . Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class Bm,nΣ (γ;ϕ) . Then∣∣a3 − a2

2

∣∣ ≤ |γ|B1

3m − 3n
.
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Corollary 2.5. Let m,n ∈ N0 ;m > n and γ ∈ C\ {0} . Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class Bm,nΣ (γ;ϕ) . Then

|a3| ≤


|γ|B1

3m−3n , 1 ≤ ψ

|γ|2B3
1

|[(3m−3n)−2n(2m−2n)]γB2
1+(2m−2n)2(B1−B2)| , 1 ≥ ψ

,

where ψ is defined by (11).

If we take m = 1 and n = 0 in Corollary 2.4 and Corollary 2.5, then
we have the following consequence.

Corollary 2.6. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class S∗Σ (γ;ϕ) . Then∣∣a3 − a2

2

∣∣ ≤ |γ|B1

2

and

|a3| ≤


|γ|B1

2 , 1 ≤ 1
2

∣∣∣1 + B1−B2

γB2
1

∣∣∣
|γ|2B3

1

|γB2
1+B1−B2| , 1 ≥ 1

2

∣∣∣1 + B1−B2

γB2
1

∣∣∣ .

If we take m = 2 and n = 1 in Corollary 2.4 and Corollary 2.5, then
we have the following consequence.

Corollary 2.7. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class CΣ (γ;ϕ) . Then∣∣a3 − a2

2

∣∣ ≤ |γ|B1

6

and

|a3| ≤


|γ|B1

6 , 1 ≤ 1
3

∣∣∣1 + 2(B1−B2)
γB2

1

∣∣∣
|γ|2B3

1

2|γB2
1+2(B1−B2)| , 1 ≥ 1

3

∣∣∣1 + 2(B1−B2)
γB2

1

∣∣∣ .

If we consider the functions ϕα and ϕβ, defined in Remark 2 in The-
orem 2.1, then we get the following Corollary 2.8 and Corollary 2.9,
respectively.
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Corollary 2.8. Let m,n ∈ N0 ;m > n and γ ∈ C\ {0} . Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class Bm,nΣ (γ;α) (0 < α ≤ 1) and µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤


2|γ|α
3m−3n , |µ− 1| ≤ σ

4|µ−1||γ|2α2

|2[(3m−3n)−2n(2m−2n)]γα+(2m−2n)2(1−α)| , |µ− 1| ≥ σ
,

where

σ =

∣∣∣∣∣1− 2n (2m − 2n)

(3m − 3n)
+

(2m − 2n)2 (1− α)

2 (3m − 3n) γα

∣∣∣∣∣ .
Corollary 2.9. Let m,n ∈ N0 ;m > n and γ ∈ C\ {0} . Let the

function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class Bm,nΣ (γ;β) (0 ≤ β < 1) and µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤


2|γ|(1−β)
3m−3n , |µ− 1| ≤

∣∣∣1− 2n(2m−2n)
3m−3n

∣∣∣
2|µ−1||γ|(1−β)

|(3m−3n)−2n(2m−2n)| , |µ− 1| ≥
∣∣∣1− 2n(2m−2n)

3m−3n

∣∣∣ .

Taking m = 1, n = 0 and γ = 1 in Corollary 2.9, we get the following
consequence.

Corollary 2.10. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class S∗Σ (β) (0 ≤ β < 1) and
µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤
 1− β , µ ∈

[
1
2 ,

3
2

]
2 |µ− 1| (1− β) , µ ∈

(
−∞, 1

2

]
∪
[

3
2 ,∞

) .

Taking m = 2, n = 1 and γ = 1 in Corollary 2.9, we get the following
consequence.

Corollary 2.11. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class CΣ (β) (0 ≤ β < 1) and
µ ∈ R. Then

∣∣a3 − µa2
2

∣∣ ≤


1−β
3 , µ ∈

[
2
3 ,

4
3

]
|µ− 1| (1− β) , µ ∈

(
−∞, 2

3

]
∪
[

4
3 ,∞

) .
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