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FEKETE-SZEGO INEQUALITIES FOR A SUBCLASS OF
ANALYTIC BI-UNIVALENT FUNCTIONS DEFINED BY
SALAGEAN OPERATOR

SErRaP BULUT

Abstract. In this paper, by means of the Saligean operator, we
introduce a new subclass By"" (v; ¢) of analytic and bi-univalent
functions in the open unit disk U. For functions belonging to this
class, we consider Fekete-Szeg6 inequalities.

1. Introduction

Let R = (—o00, 00) be the set of real numbers, C be the set of complex
numbers and

N:={1,2,3,...} = No\ {0}
be the set of positive integers.
Let A denote the class of all functions of the form

(1) Fe) =24 > apet
k=2

which are analytic in the open unit disk
U={z:2€C and |[z|<1}.

We also denote by S the class of all functions in the normalized analytic
function class A which are univalent in U.

For two functions f and g, analytic in U, we say that the function f
is subordinate to g in U, and write

f(z)=<9(z) (2€0),
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if there exists a Schwarz function w, which is analytic in U with
w(0)=0  and lw(z)] <1 (2€0)
such that
f(Z)=gw(z) (2€0).
Indeed, it is known that
f(z)=<g(z) (:€U)=f(0)=g(0) and f(U)Cg(U).
Furthermore, if the function g is univalent in U, then we have the fol-
lowing equivalence

f(z)<g(z) (2€U)«< f(0)=g(0) and f(U)cCg(U).
For f € A, Salagean [11] introduced the following operator:

(2) Df(z) = f(2),
(3) D'f(z) = =zf'(z):=Df(2),
(4) D"f(z) = D(D"'f(2)) (n € N).

If f is given by (1), then from (3) and (4) we see that
(5) D'f(z) =2+ K'apz*  (neNy),
k=2

with D™ f (0) = 0.

Since univalent functions are one-to-one, they are invertible and the
inverse functions need not be defined on the entire unit disk U. In fact,
the Koebe one-quarter theorem [9] ensures that the image of U under
every univalent function f € S contains a disk of radius 1/4. Thus every
function f € A has an inverse f~!, which is defined by

P ) =2 (z€D)
and
Pt @) =e (ol <ninz ).
In fact, the inverse function f~! is given by
(6) 1 (w) = w—asw®+ (243 — a3) w® — (5a3 — basaz + as) wh+--- .
A function f € A is said to be bi-univalent in U if both f and f~!
are univalent in U, in the sense that f~! has a univalent analytic contin-

uation to U. Let ¥ denote the class of bi-univalent functions in U given
by (1). For a brief history and interesting examples of functions in the
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class ¥, see [14] (see also [3]). In fact, the aforecited work of Srivastava
et al. [14] essentially revived the investigation of various subclasses of
the bi-univalent function class ¥ in recent years; it was followed by such
works as those by Frasin and Aouf [10], and others (see, for example,
[1,2,4,5,6,7, 13, 15]).

Let ¢ be an analytic and univalent function with positive real part on
U with ¢ (0) =1, ¢’ (0) > 0, and ¢ maps the unit disk U onto a region
starlike with respect to 1, and symmetric with respect to the real axis.
The Taylor’s series expansion of such function is of the form

(7) ©(2) =14 Byz+ Byz?> + B3z3 + - -

where all coefficients are real and By > 0. Throughout this paper we as-
sume that the function ¢ satisfies the above conditions unless otherwise
stated.

Now we define the following subclass of function class X..

Definition 1.1. Let m,n € No;m > n and v € C\ {0}. A function
f € X given by (1) is said to be in the class B&"" (v; ¢) if the following
conditions are satisfied:

1 /D™f(2)
(8) 1—|—7<an(z)—1>-<ap(z)
and

1 (D™g(w)
Y v (Bt ) <ot

where z,w € U and the function g = f~! is defined by (6).

In particular, we set By (1;¢) := Ba" () .

Remark 1. (i) If we set m = 1 and n = 0, then the class Be"" (7; ¢)
reduces to the class S5, (7; ) consists of bi-starlike functions of complex
order v of Ma-Minda type.

(ii) If we set m = 2 and n = 1, then the class By"" (7; ¢) reduces to
the class Cx, (7; @) consists of bi-convex functions of complex order ~ of
Ma-Minda type.

The classes S5, (7;¢) and Cx, (7;¢) are introduced and studied by
Deniz [8]. In particular, we get S5 (1;¢) = STx (¢) and Cx (1;¢) =
CVx (¢) (see [17]).

Remark 2. (i) For 0 < a <1, if we let

0 (2) = 9o (2) = (1—1—2

1—2

«
) =1+2az+2a%% + -
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in Definition 1.1, then we have a new class By, (; &) which consists of
functions satisfying the conditions

we s (B )< %

arg{1+ <g:(<))—1>}’<0‘2”.

For v = 1, we get the class Bn™ (1;a) = Hy" (o) introduced and

studied by Seker [12]. For m =1, n = 0 and v = 1, the class Ba"" (v; @)

reduces to the class Ss; [ of strongly bi-starlike functions of order a.
(ii) For 0 < 8 < 1, if we let

1+(1-28)=z
1—=z

in Definition 1.1, then we have a new class By, (v; ) which consists of

functions satisfying the conditions

wes ooy 1))

R+ <%_1>}>5.

For v = 1, we get the class Ba" (1;8) = Hy™ (8) introduced and
studied by Seker [12]. The class Bm ™ (v; B) reduces to the class S& ()
of bi-starlike functions of order (3 for m=1,n =0 and v = 1; also
reduces to the class Cx (f) of bi-convex functions of order g for m = 2,
n=1and y=1.

The classes S5 [a], S (8) and Cyx; (8) are introduced and studied by
Brannan and Taha [3].

In order to derive our main results, we need the following lemmas.

and

0 (2) =g (2) = —142(1-B)z+2(1 =) 22+

and

Lemma 1.2. [9] Let p(2) = 1+ c12 + 222 + --- € P, where P is
the family of all functions p, analytic in U, for which ®p(z) > 0. Then
lek| <2 for k=1,2,....

Lemma 1.3. [16] Let k,l € R and 21,20 € C. If |z1| < R and
|z2| < R, then

2RIk, [kl =1

|(B+1)z1 4+ (kE=1) 2| <
ORI K <l
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In this paper, we obtain the Fekete-Szegd inequalities for functions
belong to the class Ba" (v;¢) as well as its special classes.

2. Main Results

Theorem 2.1. Let m,n € No;m > n and v € C\{0}. Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class By, (v; ) and p € R. Then

(10)
B
3LZL§" ’ |M - 1‘ < ¢
2
az — paz| < ;
| ] [u=1||y|* B =1 >
|[(3m—3n)—2n(2m—2m)]yB}+(2m—2")*(B1—B2)| ’ -
where
on (9m _ on om _9m2 (B, — B
3m — 3n (3m — 3n) vB;

Proof. Let f € By (v;¢) and g = f~1. Then there exist analytic
functions u,v : U — U, with « (0) = v (0) = 0, such that

(12) 142 (Gor —1) =)
and
1 (D™g(w) _
(13) 142 (G 1) = 0 W),
Define the functions p and ¢ by
p(z):izgzzleplz—l—png—l—--- (z€ )
and .
o) = T 1w+ (weD)

or equivalently

(14) u(z)zp(z)l:;<p12+<p2—p%>22—|—-~-> (z€ )

p(z)+1 2
and
(15) 2
v(w):ZEZ)4_—1:;<Q1 +<Q2—(]21>w2+ ) (weU).
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Using (14) and (15) in (12) and (13), we obtain

2m — n 1
16 - -B
(16) ~ az 9 1P1
2
(3m—3")az—27(2m —27)a2 1 D1 1., o
1 2 — B (p-")i-B
(17) = 21(]92 2>+4 2P7
2m —2n 1
18 — = —-B
(18) o 5B
(3m—3")(2a3—a3 ) —2" (2™ —2")a3 1 q 1,
1 = B — )+ - Byl
(19) > 5 b1\ @2 2+42(J1
From (16) and (18), we find that
(20) pL=—q
and
@ 2’

1
a3 = —B} (pi +q).

21 2

Also summing (17) and (19) results in

2 1 1
21Em =3 -2 @7 - 2]} = 3By  a2) - (B~ Ba) (5 + o).
Combining this with (21) leads to
(22)
2 _ 7V’ B? (p2 + ¢2)
Ay =

{lm—3m) — 20 (2m — 2|y B} + (27— 27 (B - By)}

On the other hand, by subtracting (19) from (17) and a computation
using (20) finally lead to

7By
23 —q2 4y 17
( ) as aj + 4 (3m — 3n)

From (22) and (23) it follows that

vB 1 1
ag—ua% = Tl [<h(u)+ 3m_3n>p2+ <h(M)— 3m_3n> Q2] )

where

(P2 — q2) -

(1—p)B}
(37— 37) — 20 (27 — 20| B} + (2 — 202 (By — By)

h(p) =
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Since all B; (j € N) are real and By > 0, by Lemma 1.2 and Lemma
1.3, we conclude that

B
5 3|'r’ryz‘,§n 9 O S ‘h( )‘ < 3m 3n
|a3 — pa| < ,
W Bilh(w] o k()] 2 grtge
which completes the proof. ]

Letting m =1, n = 0 and v = 1 in Theorem 2.1, then we have the
following consequence.

Corollary 2.2. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class STy (p) and p € R. Then

B -t 2|

2
ja = paz] < |u—1|B3
_ 1

=By _ 1 B1-By
|Bi+B1—B2| e 1|22‘1+ B}

Remark 3. If we choose g = 0 in the above corollary, then we get
[17, Corollary 11].

Letting m = 2, n = 1 and v = 1 in Theorem 2.1, then we have the
following consequence.

Corollary 2.3. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class CVyx (p) and p € R. Then

N e
2
ag — pasz| <
| d [u—1|B7 —1>1 ’1_‘_2(31 2)
2|B}+2(B1—Ba)| BY

Remark 4. If we choose x = 0 in the above corollary, then we get
[17, Corollary 18].

If we take 4 = 1 and p = 0 in Theorem 2.1, then we have the following
Corollary 2.4 and Corollary 2.5, respectively.

Corollary 2.4. Let m,n € No;m > n and v € C\{0}. Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class By, (v; ) . Then

h/’Bl

‘a3 a2‘—3m_3n'
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Corollary 2.5. Let m,n € No;m > n and v € C\{0}. Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class By, (v; ) . Then

B
B , 1<y
|CL3| é ‘ ‘2B3 )
RANECST 1> ¢J

|[(3m—3n)—2n(2m —27) |y B} +(2m—2")*(B1—Ba2)|
where 1) is defined by (11).

If we take m = 1 and n = 0 in Corollary 2.4 and Corollary 2.5, then
we have the following consequence.

Corollary 2.6. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class S5, (v; ). Then

o1 _ B
az —as5| <
‘ 3 2‘ 2
and
|'Y|231 7 1< % ‘1 + B}}/E%BQ
|a3| < y|2 B3

¥ By 1 B1—B>

|vB?+B1—Ba| ' 123 ‘1 + B}

If we take m = 2 and n = 1 in Corollary 2.4 and Corollary 2.5, then
we have the following consequence.

Corollary 2.7. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class Cx, (v; @) . Then

|ag —a3| < M(i&
and
lag| < . -
m ) 12%)14-717%2

If we consider the functions ¢, and ¢g, defined in Remark 2 in The-
orem 2.1, then we get the following Corollary 2.8 and Corollary 2.9,
respectively.
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Corollary 2.8. Let m,n € No;m > n and v € C\{0}. Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class By, (v;a) (0 < a < 1) and p € R. Then

2|v|a
3m|_|3n ’ |:U’ - 1‘ <o
as _:U'a‘%‘ S 4 1l ‘2 5 5
p=1y[ e 1>
@ s 2 e zPae] 0 =
where

o (2m —2n) (2™ —2™)2 (1 — @)
- (3m—3n) 2(3m — 3n) ya

oc=|1

Corollary 2.9. Let m,n € No;m > n and v € C\{0}. Let the
function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the function class By, (v; 8) (0 < 8 < 1) and p € R. Then

21y[(1-5) 2m(2m—2m)
Im_3n ) ’M - 1‘ S ’1 - 3m_3n
2
’613 - #az‘ <
2lp=1]v|(1-8) | 1| > |1 2m(2m—2n)
‘(3m_3n)_2n(2m_2n)| ) N - sl - 3m_3n

Taking m = 1, n = 0 and v = 1 in Corollary 2.9, we get the following
consequence.

Corollary 2.10. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class Sy () (0 < 8 < 1) and
w € R. Then

1_6 ’ ME[%7%]
2lp—1/(1=8) , pe (—o0,3]U[2, )

Taking m = 2, n =1 and v = 1 in Corollary 2.9, we get the following
consequence.

ag — MG%‘ <

Corollary 2.11. Let the function f (z) given by the Taylor-Maclaurin
series expansion (1) be in the function class Cx. () (0 < 5 < 1) and
u € R. Then

as — pad] <
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