DOI QR코드

DOI QR Code

Generation of Full Poincaré Beams on Arbitrary Order Poincaré Sphere

  • Wang, Jue (School of Electronic and Optical Engineering, Nanjing University of Science and Technology) ;
  • Wang, Lin (School of Electronic and Optical Engineering, Nanjing University of Science and Technology) ;
  • Xin, Yu (School of Electronic and Optical Engineering, Nanjing University of Science and Technology)
  • Received : 2017.10.09
  • Accepted : 2017.11.17
  • Published : 2017.12.25

Abstract

We firstly develop a straightforward method to generate full $Poincar{\acute{e}}$ beams with any polarization geometry over an arbitrary order $Poincar{\acute{e}}$ sphere. We implement this by coaxial superposition of two orthogonal circular polarized beams with alternative topological charges with the help of a Mach-Zehnder interferometer. Secondly we find the existence of singularity points. And the inner relationship between their characteristics and the order of $Poincar{\acute{e}}$ spheres is also studied. In summary, this work provides a convenient and effective way to generate vector beams and to control their polarization states.

Keywords

References

  1. M. S. Soskin and M. V. Vasnetsov, "Singular optics," Prog. Opt. 42(4), 219-276 (2001).
  2. H. Poincare, Theorie mathematique de la lumiere. Vol. 2. Gauthier Villars, 1892.
  3. M. Born and E. Wolf, Principles of Optics. Cambridge University, 1997.
  4. A. M. Beckley, T. G. Brown, and M. A. Alonso, "Full Poincare beams," Opt. Express 18(10), 10777-10785 (2010). https://doi.org/10.1364/OE.18.010777
  5. A. M. Beckley, T. G. Brown, and M. A. Alonso, "Full Poincare beams II: partial polarization," Opt. Express 20(9), 9357-9362 (2012). https://doi.org/10.1364/OE.20.009357
  6. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, "Higher-order Poincare sphere, Stokes parameters, and the angular momentum of light," Phys. Rev. Lett. 107(5), 053601 (2011). https://doi.org/10.1103/PhysRevLett.107.053601
  7. X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, "Hybrid-order Poincare sphere," Phys. Rev. A. 91(2), 023801 (2015). https://doi.org/10.1103/PhysRevA.91.023801
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A. 45(11), 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  9. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Adv. Opt. Photon. 1(1), 1-57 (2009). https://doi.org/10.1364/AOP.1.000001
  10. X. Ling, X. Yi, Z. Dai, Y. Wang, and L. Chen "Characterization and manipulation of full Poincaré beams on the hybrid Poincare sphere," J. Opt. Soc. Am. B 33(11), 2172-2176 (2016). https://doi.org/10.1364/JOSAB.33.002172
  11. S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, and S. Wen, "Generation of arbitrary cylindrical vector beams on the higher order Poincare sphere," Opt. Lett. 39(18), 5274-5276 (2014). https://doi.org/10.1364/OL.39.005274
  12. F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato "Generation and dynamics of optical beams with polarization singularities," Opt. Express 21(7), 8815-8820 (2013). https://doi.org/10.1364/OE.21.008815
  13. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, "Degree of polarization for optical near fields," Phys. Rev. E. 66(1), 016615 (2002). https://doi.org/10.1103/PhysRevE.66.016615
  14. A. I. Mokhun, M. S. Soskin, and I. Freund, "Elliptic critical points: C-points, a-lines, and the sign rule," Opt. Lett 27(12), 995-997 (2002). https://doi.org/10.1364/OL.27.000995
  15. I. Freund, "Polarization singularity indices in Gaussian laser beams," Opt. Commun. 201(4), 251-270 (2002). https://doi.org/10.1016/S0030-4018(01)01725-4
  16. S. Feng, H. G. Winful, "Physical origin of the Gouy phase shift," Opt. Lett. 26(8), 485-487 (2001). https://doi.org/10.1364/OL.26.000485
  17. M.-A. Garcia-March, A. Ferrando, M. Zacares, S. Sahu, and D. E. Ceballos-Herrera, "Symmetry, winding number, and topological charge of vortex solitons in discrete-symmetry media," Phys. Rev. A. 79(5), 053820 (2009). https://doi.org/10.1103/PhysRevA.79.053820
  18. A. Ferrando and M. A. Garcia-March, "Analytical solution for multi-singular vortex Gaussian beams: the mathematical theory of scattering modes," J. Opt. 18(6), 064006 (2016). https://doi.org/10.1088/2040-8978/18/6/064006
  19. E. Otte, C. Alpmann, and C. Denz, "Higher-order polarization singularitites in tailored vector beams," J. Opt. 18, 074012 (2016). https://doi.org/10.1088/2040-8978/18/7/074012
  20. M. R. Dennis, "Polarization singularity anisotropy: determining monstardom," Opt. Lett. 33(22), 2572-2574 (2008). https://doi.org/10.1364/OL.33.002572
  21. W. Zhu, V. Shvedov, W. She, and W. Krolikowski, "Transverse spin angular momentum of tightly focused full Poincaré beams," Opt. Express 23(26), 34029-34041 (2015). https://doi.org/10.1364/OE.23.034029
  22. R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto and M. Takeda, "Characterization of spatial polarization fluctuations in scattered field," J. Opt. 16(10), 105010 (2014). https://doi.org/10.1088/2040-8978/16/10/105010
  23. S. G. Reddy, S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, "Higher order optical vortices and formation of speckles," Opt. Lett. 39(15), 4364-4367 (2014). https://doi.org/10.1364/OL.39.004364
  24. S. G. Reddy, P. Chithrabhanu, P. Vaity, A. Aadhi, S. Prabhakar, and R. P. Singh, "Non-diffracting speckles of a perfect vortex beam," J. Opt. 18(5), 055602 (2016). https://doi.org/10.1088/2040-8978/18/5/055602

Cited by

  1. Generation of arbitrary perfect Poincaré beams vol.125, pp.7, 2019, https://doi.org/10.1063/1.5079850