DOI QR코드

DOI QR Code

Effect of Double Schottky Barrier in Gallium-Zinc-Oxide Thin Film

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2017.08.14
  • Accepted : 2017.09.12
  • Published : 2017.12.25

Abstract

This reports the electrical behavior, bonding structure and Schottky contact of gallium-zinc-oxide (GZO) thin film annealed at $100{\sim}400^{\circ}C$. The mobility of GZO with high density of PL spectra and crystal structure was also increased because of the structural matching between GZO and Si substrate of a crystal structure. However, the GZO annealed at $200^{\circ}C$ with an amorphous structure had the highest mobility as a result of a band to band tunneling effect. The mobility of GZO treated at low annealing temperatures under $200^{\circ}C$ increased at the GZO with an amorphous structure, but that at high temperatures over $200^{\circ}C$ also increased when it was the GZO of a crystal structure. The mobility of GZO with a Schottky barrier (SB) was mostly increased because of the effect of surface currents as well as the additional internal potential difference.

Keywords

References

  1. J.C.K. Lam, M.Y.M. Huang, T. H. Ng, M.K.B. Dawood, F. Zhang, A. Du, H. Sun, Z. Shen, and Z. Mai, Appl. Phys. Lett., 102, 022908 (2013). [DOI: https://doi.org/10.1063/1.4776735]
  2. T. Oh and C. H. Kim, IEEE Trans. Plasma Sci., 38, 1598 (2010). [DOI: https://doi.org/10.1109/TPS.2010.2049665]
  3. M. E. Lopes, H. L. Gomes, M.C.R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009). [DOI: https://doi.org/10.1063/1.3187532]
  4. T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010). https://doi.org/10.3938/jkps.56.1150
  5. T. Oh, J. Nanosci. Nanotechnol., 14, 9047 (2014). [DOI: https://doi.org/10.1166/jnn.2014.10071]
  6. J. Maserjian and N. Zamani, J. Appl. Phys., 53, 559 (1982). [DOI: https://doi.org/10.1063/1.329919]
  7. A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, Phys. Rev. B, 74, 195128 (2006). [DOI: https://doi.org/10.1103/PhysRevB.74.195128]
  8. Q. Xin, L. Yan, Y. Luo, and A. Song, Appl. Phys. Lett., 106, 113506 (2015). [DOI: https://doi.org/10.1063/1.4916030]
  9. T. Oh, Mater. Res. Bull., 77, 1 (2016). [DOI: https://doi.org/10.1016/j.materresbull.2015.11.038]
  10. H. B. Liu, X. H. Pan, J. Y. Huang, H. P. He, and Z. Z. Ye, Thin Solid Films, 540, 53 (2013). [DOI: https://doi.org/10.1016/j.tsf.2013.05.133]
  11. C. C. Lo and T. E. Hsieh, Ceram. Int., 38, 3977 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2012.01.052]
  12. Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, Appl. Phys. Lett., 85, 5923 (2004). [DOI: https://doi.org/10.1063/1.1836870]
  13. T. Oh, Electron. Mater. Lett., 11, 853 (2015). [DOI: https://doi.org/10.1007/s13391-015-4505-3]
  14. M. J. Kellicutt, I. S. Suzuki, C. R. Burr, M. Suzuki, M. Ohashi, and M. S. Whittingham, Phys. Rev. B, 47, 13664 (1993). [DOI: https://doi.org/10.1103/PhysRevB.47.13664]
  15. H. L. Mosbacker, Y. M. Strzhemechny, B. D. White, P. E. Smith, D. C. Look, D. C. Reynolds, C. W. Litton, and L. J. Brillson, Appl. Phys. Lett., 87, 012102 (2015). [DOI: https://doi.org/10.1063/1.1984089]
  16. L. J. Brillson and Y. Lu, J. Appl. Phys., 109, 121301 (2011). [DOI: https://doi.org/10.1063/1.3581173]
  17. S. D. Ganichev, E. Ziemann, W. Prettl, I. N. Yassievich, A. A. Istratov, and E. R. Weber, Phys. Rev. B, 61, 10361 (2000). [DOI: https://doi.org/10.1103/PhysRevB.61.10361]
  18. O. Mitrofanov and M. Manfra, J. Appl. Phys., 95, 6414 (2004). [DOI: https://doi.org/10.1063/1.1719264]
  19. A. Janotti and C. G. Van de Walle, J. Cryst. Growth, 287, 58 (2006). [DOI: https://doi.org/10.1016/j.jcrysgro.2005.10.043]

Cited by

  1. Effect of Double Junctions in Nano Structure Oxide Materials and Gas Sensitivity vol.19, pp.5, 2018, https://doi.org/10.1007/s42341-018-0055-3