DOI QR코드

DOI QR Code

Change in Properties of (Ba1-xLax)Fe3+1-tFe4+tO3-y System Depending on Heat Treatment Conditions

  • Lee, Eun-Seok (Department of Chemistry, Cheongju University) ;
  • Lee, Seo-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2017.02.15
  • Accepted : 2017.07.25
  • Published : 2017.12.25

Abstract

The perovskite system $(Ba^{2+}{_{1-x}}La^{3+}{_x})Fe^{3+}{_{1-t}}Fe^{4+}{_t}O_{3-y}$ (y = (1 - x --t)/2) having a composition of x = 0.0, 0.1, 0.2, and 0.3 showedean increase in $Fe^{4+}$ mole ratios with an increase in oxygen partial pressure ($N_2{\rightarrow}air{\rightarrow}O_2$), and with an increasefin s, the $Fe^{3+}$ quantity decreased and oxygen content (3-y value) increased. For each N sampls heat-treated in $N_2$ gas, a considerable weight gain, i.e.g a steadynincrease if oxygen content, was observed in the TGA data on the cooling process. The conductivity values at a constant temperature were in the order of $N_2$$O_2$; the respective log ${\sigma}$ values (${\Omega}^{-1}{\cdot}cm^{-1}$) at 323 K of the BL0 sample were -5.75 (BL0-N), -3.39 (BL0-A), and -0.53 (BL0-O). The mixed valencies of $Fe^{3+}$ and $Fe^{4+}$ ions in each sample were also confirmed by both the oxidation curve above 350 mV and the cathodic reduction curve below 200 mV from cyclic voltammetry.

Keywords

References

  1. A. M. Svensson, S. Sunde, and K. Nissancioglu, J. Electrochem. Soc., 145, 1390 (1998). [DOI: https://doi.org/10.1149/1.1838471]
  2. A. A. Yaremchenko, M. V. Patrakeev, V. V. Kharton, F.M.B. Marques, I. A. Leonidov, and V. L. Kozhevnikov, Solid State Sci., 6, 357 (2004). [DOI: https://doi.org/10.1016/j.solidstatesciences.2004.01.005]
  3. E. S. Lee, J. Ind. Eng. Chem., 14, 701 (2008). [DOI: https://doi.org/10.1016/j.jiec.2008.02.011]
  4. E. S. Lee, J. Korean Ind. Eng. Chem., 13, 224 (2002).
  5. A. Wattiaux, J. C. Grenier, M. Pouchard, and P. Hagenmuller, J. Electrochem. Soc., 134, 1714 (1987). [DOI: https://doi.org/10.1149/1.2100741]
  6. A. Wattiaux, J. C. Grenier, M. Pouchard, and P. Hagenmuller, J. Electrochem. Soc., 134, 1718 (1987). [DOI: https://doi.org/10.1149/1.2100742]
  7. H. Ullmann and N. Trofimenko, Solid State Ionics, 119, 1 (1999). [DOI: https://doi.org/10.1016/S0167-2738(98)00474-3]
  8. E. S. Lee, J. Korean Ind. Eng. Chem., 11, 816 (2000).
  9. C. H. Yo, E. S. Lee, W. B. Pyon, and M. S. Pyon, J. Kor. Chem. Soc.,32, 3 (1988).
  10. E. S. Lee, J. Ind. Sci., Cheongju Univ.,25, 15 (2008).
  11. C. H. Yo and E. S. Lee, Bull. Korean Chem. Soc., 17, 321 (1996).
  12. Y. Takeda, C. Okazoe, N. Imanishi, O. Yamamoto, S. Kawasaki, and M. Takano, J. Ceram. Soc. Jpn., 106, 759 (1998). https://doi.org/10.2109/jcersj.106.759
  13. J. C. Grenier, A. Wattiaux, J. P. Doumerc, P. Dordor, L. Fournes, J. P. Chaminade, and M. Pouchard, J. Solid State Chem., 96, 20 (1992). [DOI: https://doi.org/10.1016/S0022-4596(05)80293-2]
  14. J. W. Stevenson, T. R. Amstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., 143, 2722 (1996). [DOI: https://doi.org/10.1149/1.1837098]
  15. J. A. Lane, S. J. Benson, D. Waller, and J. A. Kilner, Solid State Ionics, 121, 201 (1999). [DOI: https://doi.org/10.1016/S0167-2738(99)00014-4]
  16. H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, and A. Ahmad-Khanlou, Solid State Ionics, 138, 79 (2000). [DOI: https://doi.org/10.1016/S0167-2738(00)00770-0]
  17. S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, and J. W. Stevenson, J. Power Sources,113, 1 (2003). [DOI: https://doi.org/10.1016/S0378-7753(02)00455-X]
  18. F. Mauvy, J. M. Bassat, E. Boehm, P. Dordor, J. C. Grenier, and J. P. Loup, J. European Ceramic Soc., 24, 1265 (2004). [DOI: https://doi.org/10.1016/s0955-2219(03)00500-4]
  19. H. Iwahara, T. Yajima, T. Hibino, and H. Ushida, J. Electrochem. Soc., 140, 1687 (1993). [DOI: https://doi.org/10.1149/1.2221624]